Lecture 25
Records and Subtyping
Records

We’ve seen binary products (pairs), and they generalize to n-ary products (tuples).

Records are a generalization of tuples where we mark each field with a label.
Records

We’ve seen binary products (pairs), and they generalize to n-ary products (tuples).

Records are a generalization of tuples where we mark each field with a label.

Example:

\[
\{ \text{foo} = 32, \text{bar} = \text{true} \}
\]

is a record value with an integer field foo and a boolean field bar.
We’ve seen binary products (pairs), and they generalize to n-ary products (tuples).

Records are a generalization of tuples where we mark each field with a label.

Example:

```
{foo = 32, bar = true}
```

is a record value with an integer field foo and a boolean field bar.

Its type is:

```
{foo: int, bar: bool}
```
Syntax

\[l \in \mathcal{L} \]

\[e ::= \cdots | \{ l_1 = e_1, \ldots, l_n = e_n \} | e.l \]

\[v ::= \cdots | \{ l_1 = v_1, \ldots, l_n = v_n \} \]

\[\tau ::= \cdots | \{ l_1: \tau_1, \ldots, l_n: \tau_n \} \]
Dynamic Semantics

\[
E ::= \ldots \\
| \{l_1 = v_1, \ldots, l_{i-1} = v_{i-1}, l_i = E, l_{i+1} = e_{i+1}, \ldots, l_n = e_n\} \\
| E.l
\]

\[
\{l_1 = v_1, \ldots, l_n = v_n\}.l_i \rightarrow v_i
\]
\[\forall i \in 1..n. \quad \Gamma \vdash e_i : \tau_i \]
\[\Gamma \vdash \{l_1 = e_1, \ldots, l_n = e_n\} : \{l_1 : \tau_1, \ldots, l_n : \tau_n\} \]
\[\Gamma \vdash e : \{l_1 : \tau_1, \ldots, l_n : \tau_n\} \]
\[\Gamma \vdash e.l_i : \tau_i \]
Example

\[
\text{GETX} \triangleq \lambda p : \{x : \texttt{int}, y : \texttt{int}\}. p.x
\]
Example

\[
\text{GETX} \triangleq \lambda p: \{x: \textbf{int}, y: \textbf{int}\}. p.x
\]

\[
\text{GETX } \{x = 4, y = 2\}
\]
Example

\[\text{GETX} \triangleq \lambda p : \{ x : \text{int}, y : \text{int} \}. p.x \]

\[\text{GETX} \{ x = 4, y = 2 \} \]

\[\text{GETX} \{ x = 4, y = 2, z = 42 \} \]
Example

\[
\text{GETX} \triangleq \lambda p : \{x : \text{int}, y : \text{int}\}. p.x
\]

GETX \{x = 4, y = 2\}

GETX \{x = 4, y = 2, z = 42\}

GETX \{y = 2, x = 4\}
Subtyping

Definition (Subtype)

τ_1 is a *subtype* of τ_2, written $\tau_1 \leq \tau_2$, if a program can use a value of type τ_1 whenever it would use a value of type τ_2.

If $\tau_1 \leq \tau_2$, we also say τ_2 is the *supertype* of τ_1.

\[\vdash e : \tau' \vdash e : \tau' \]

SUBSUMPTION

This typing rule says that if e has type τ and τ is a subtype of τ', then e also has type τ'.

\[7 \]
Subtyping

Definition (Subtype)

\(\tau_1\) is a *subtype* of \(\tau_2\), written \(\tau_1 \leq \tau_2\), if a program can use a value of type \(\tau_1\) whenever it would use a value of type \(\tau_2\).

If \(\tau_1 \leq \tau_2\), we also say \(\tau_2\) is the *supertype* of \(\tau_1\).

\[
\Gamma \vdash e : \tau \quad \tau \leq \tau' \\
\hline
\Gamma \vdash e : \tau' \\
\text{SUBSUMPTION}
\]

This typing rule says that if \(e\) has type \(\tau\) and \(\tau\) is a subtype of \(\tau'\), then \(e\) also has type \(\tau'\).
We’ll define a new **subtyping relation** that works together with the subsumption rule.

\[\tau_1 \leq \tau_2 \]
Record Subtyping

This program isn’t well-typed (yet):

\[(\lambda p : \{ x : \textbf{int} \}. p.x) \{ x = 4, y = 2 \}\]
Record Subtyping

This program isn’t well-typed (yet):

\[(\lambda p : \{ x : \text{int} \}. p.x) \{ x = 4, y = 2 \} \]

So let’s add width subtyping:

\[
\begin{align*}
 & k \geq 0 \\
 & \{ l_1 : \tau_1, \ldots, l_{n+k} : \tau_{n+k} \} \leq \{ l_1 : \tau_1, \ldots, l_n : \tau_n \}
\end{align*}
\]
Record Subtyping

This program also doesn’t get stuck:

\[
(\lambda p:\{x:\textbf{int}, y:\textbf{int}\}. p.x + p.y) \{y = 37, x = 5\}
\]
Record Subtyping

This program also doesn’t get stuck:

\[(\lambda p : \{x : \text{int}, y : \text{int}\}. \ p.x + p.y) \ {y = 37, x = 5}\]

So we can make it well-typed by adding permutation subtyping:

\[\pi \text{ is a permutation on } 1..n\]

\[\{l_1 : \tau_1, \ldots, l_n : \tau_n\} \leq \{l_{\pi(1)} : \tau_{\pi(1)}, \ldots, l_{\pi(n)} : \tau_{\pi(n)}\}\]
Record Subtyping

Does this program get stuck? Is it well-typed?

\[
(\lambda p : \{ x : \{ y : \text{int} \} \}. p.x.y) \{ x = \{ y = 4, z = 2 \} \}
\]
Record Subtyping

Does this program get stuck? Is it well-typed?

\[(\lambda p : \{ x : \{ y : \text{int} \} \}. p . x . y) \{ x = \{ y = 4, z = 2 \} \}\]

Let’s add depth subtyping:

\[
\forall i \in 1..n. \quad \tau_i \leq \tau'_i \\
\{ l_1 : \tau_1, \ldots, l_n : \tau_n \} \leq \{ l_1 : \tau_1, \ldots, l_n : \tau_n \}
\]
Putting all three forms of record subtyping together:

$$\forall i \in 1..n. \ \exists j \in 1..m. \ \ l'_i = l_j \ \land \ \ \tau_j \leq \tau'_i$$

$$\{l_1:\tau_1, \ldots, l_m:\tau_m\} \leq \{l'_1:\tau'_1, \ldots, l'_n:\tau'_n\} \ \text{S-RECORD}$$
We always make the subtyping relation both reflexive and transitive.

- **S-REFL**
 \[
 \frac{\tau \leq \tau}{\tau_1 \leq \tau_2} \quad \text{S-TRANS}
 \]

Think of every type describing a set of values. Then \(\tau_1 \leq \tau_2 \) when \(\tau_1 \)'s values are a subset of \(\tau_2 \)'s.
Top Type

It’s sometimes useful to define a *maximal* type with respect to subtyping:

\[
\tau ::= \cdots \mid \top
\]

\[
\frac{}{\tau \leq \top} \quad \text{S-Top}
\]

Everything is a subtype of \(\top \), as in Java’s `Object` or Go’s `interface{}`.
We can also write subtyping rules for sums and products:

\[
\frac{\tau_1 \leq \tau_1' \quad \tau_2 \leq \tau_2'}{\tau_1 + \tau_2 \leq \tau_1' + \tau_2'} \quad \text{S-Sum}
\]
We can also write subtyping rules for sums and products:

\[
\frac{\tau_1 \leq \tau'_1 \quad \tau_2 \leq \tau'_2}{\tau_1 + \tau_2 \leq \tau'_1 + \tau'_2}\quad \text{S-Sum}
\]

\[
\frac{\tau_1 \leq \tau'_1 \quad \tau_2 \leq \tau'_2}{\tau_1 \times \tau_2 \leq \tau'_1 \times \tau'_2}\quad \text{S-Product}
\]
Function Types

How should we decide whether one function type is a subtype of another?

$\tau_1 \rightarrow \tau_2 \leq \tau'_1 \rightarrow \tau'_2$
Desiderata

We’d like to have:

$$\text{int} \rightarrow \{x:\text{int}, y:\text{int}\} \leq \text{int} \rightarrow \{x:\text{int}\}$$
Desiderata

We’d like to have:

\[\text{int} \rightarrow \{x:\text{int}, y:\text{int}\} \leq \text{int} \rightarrow \{x:\text{int}\} \]

And:

\[\{x:\text{int}\} \rightarrow \text{int} \leq \{x:\text{int}, y:\text{int}\} \rightarrow \text{int} \]
Desiderata

We’d like to have:

\[
\text{int} \rightarrow \{x: \text{int}, y: \text{int}\} \leq \text{int} \rightarrow \{x: \text{int}\}
\]

And:

\[
\{x: \text{int}\} \rightarrow \text{int} \leq \{x: \text{int}, y: \text{int}\} \rightarrow \text{int}
\]

In general, to prove:

\[
\tau_1 \rightarrow \tau_2 \leq \tau'_1 \rightarrow \tau'_2
\]

we’ll require:

- Argument types are **contravariant**: \(\tau'_1 \leq \tau_1 \)
- Return types are **covariant**: \(\tau_2 \leq \tau'_2 \)
Putting these two pieces together, we get the subtyping rule for function types:

\[
\frac{\tau_1' \leq \tau_1 \quad \tau_2 \leq \tau_2'}{\tau_1 \rightarrow \tau_2 \leq \tau_1' \rightarrow \tau_2'} \quad \text{S-FUNCTION}
\]
What should the relationship be between τ and τ' in order to have $\tau \text{ ref} \leq \tau' \text{ ref}$?
Example

If r' has type $\tau' \text{ref}$, then $!r'$ has type τ'.

Imagine we replace r' with r, where r has a type τref that we’ve somehow decided is a subtype of $\tau' \text{ref}$.
If r' has type $\tau' \textbf{ref}$, then $!r'$ has type τ'.

Imagine we replace r' with r, where r has a type $\tau \textbf{ref}$ that we’ve somehow decided is a subtype of $\tau' \textbf{ref}$.

Then $!r$ should still produce something can be treated as a τ'. In other words, it should have a type that is a subtype of τ'.

So the referent type should be covariant:

$$
\frac{\tau \leq \tau'}{
\tau \textbf{ref} \leq \tau' \textbf{ref} }
$$
Example

If v has type τ', then $r' := v'$ should be legal.

If we replace r' with r, then it must still be legal to assign $r := v$. So $!r$ would then produce a value of type τ'.
If \(v \) has type \(\tau' \), then \(r' := v' \) should be legal.

If we replace \(r' \) with \(r \), then it must still be legal to assign \(r := v \). So \(!r \) would then produce a value of type \(\tau' \).

So the referent type should be contravariant!

\[
\frac{\tau' \leq \tau}{\tau \text{ ref} \leq \tau' \text{ ref}}
\]
Reference Subtyping

In fact, subtyping for reference types must be invariant: a reference type τref is a subtype of $\tau' \text{ref}$ if and only if $\tau \leq \tau'$ and $\tau' \leq \tau$.

\[
\frac{\tau \leq \tau'}{\tau \text{ref} \leq \tau' \text{ref}} \quad \text{S-REF}
\]
Tragically, Java’s mutable arrays use covariant subtyping!
Java Arrays

Tragically, Java’s mutable arrays use covariant subtyping!

Suppose that Cow is a subtype of Animal.

Code that only reads from arrays typechecks:

```java
Animal[ ] arr = new Cow[ ] { new Cow(“Alfonso”) };
Animal a = arr[0];
```
Tragically, Java’s mutable arrays use covariant subtyping!

Suppose that Cow is a subtype of Animal.

Code that only reads from arrays typechecks:

```java
Animal[] arr = new Cow[] { new Cow(“Alfonso”) };
Animal a = arr[0];
```

but writing to the array can get into trouble:

```java
arr[0] = new Animal(“Brunhilda”);
```

Specifically, this generates an ArrayStoreException.