1 Lambda calculus evaluation

There are many different evaluation strategies for the λ-calculus. The most permissive is full β reduction, which allows any redex—i.e., any expression of the form $(\lambda x. e_1) e_2$—to step to $e_1[e_2/x]$ at any time. It is defined formally by the following small-step operational semantics rules:

$$
\begin{align*}
\frac{e_1 \rightarrow e'_1}{e_1 e_2 \rightarrow e'_1 e_2} & \quad \frac{e_2 \rightarrow e'_2}{e_1 e_2 \rightarrow e_1 e'_2} & \quad \frac{e_1 \rightarrow e'_1}{(\lambda x. e_1) e_2 \rightarrow e_1[e_2/x]} \\
\frac{\lambda x. e_1 \rightarrow \lambda x. e'_1}{e_1 e_2 \rightarrow e_1 e'_2} & \quad \beta & \\
\end{align*}
$$

The call by value (CBV) strategy enforces a more restrictive strategy: it only allows an application to reduce after its argument has been reduced to a value (i.e., a λ-abstraction) and does not allow evaluation under a λ. It is described by the following small-step operational semantics rules (here we show a left-to-right version of CBV):

$$
\begin{align*}
\frac{e_1 \rightarrow e'_1}{e_1 e_2 \rightarrow e'_1 e_2} & \quad \frac{e_2 \rightarrow e'_2}{v_1 e_2 \rightarrow v_1 e'_2} & \quad \beta & \\
\frac{(\lambda x. e_1) v_2 \rightarrow e_1[v_2/x]}{v_1 e_2 \rightarrow v_1 e'_2} & \quad \beta & \\
\end{align*}
$$

Finally, the call by name (CBN) strategy allows an application to reduce even when its argument is not a value but does not allow evaluation under a λ. It is described by the following small-step operational semantics rules:

$$
\begin{align*}
\frac{e_1 \rightarrow e'_1}{e_1 e_2 \rightarrow e'_1 e_2} & \quad \beta & \\
\frac{(\lambda x. e_1) e_2 \rightarrow e_1[e_2/x]}{e_1 \rightarrow e'_1} & \quad \beta & \\
\end{align*}
$$

2 Confluence

It is not hard to see that the full β reduction strategy is non-deterministic. This raises an interesting question: does the choices made during the evaluation of an expression affect the final result? The answer turns out to be no: full β reduction is confluent in the following sense:

Theorem (Confluence). If $e \rightarrow^* e_1$ and $e \rightarrow^* e_2$ then there exists e' such that $e_1 \rightarrow^* e'$ and $e_2 \rightarrow^* e'$.

Confluence can be depicted graphically as follows:

```
    e
   / \\
  /   \\
 e_1 - - - e_2
   \   \\
    \  \\
     e'  \\
```

Confluence is often also called the Church–Rosser property.
3 Substitution

Each of the evaluation relations for λ-calculus has a β defined in terms of a substitution operation on expressions. Because the expressions involved in the substitution may share some variable names (and because we are working up to α-equivalence) the definition of this operation is slightly subtle and defining it precisely turns out to be trickier than might first appear.

As a first attempt, consider an obvious (but incorrect) definition of the substitution operator. Here we are substituting e for x in some other expression:

\[
y(e/x) = \begin{cases} e & \text{if } y = x \\ y & \text{otherwise} \end{cases}
\]

\[
(e_1 e_2)(e/x) = (e_1(e/x))(e_2(e/x))
\]

\[
(\lambda y.e_1)(e/x) = \lambda y.(e_1(e/x)) \quad \text{where } y \neq x
\]

The intuitive idea is that the last rule relies on α-equivalence to “rewrite” abstractions that use x so they do not conflict. Unfortunately, this definition produces the wrong results when we substitute an expression with free variables under a λ. For example,

\[
(\lambda y.x)(y/x) = (\lambda y.y)
\]

To fix this problem, we need to revise our definition so that when we substitute under a λ we do not accidentally bind variables in the expression we are substituting. The following definition correctly implements capture-avoiding substitution:

\[
y(e/x) = \begin{cases} e & \text{if } y = x \\ y & \text{otherwise} \end{cases}
\]

\[
(e_1 e_2)(e/x) = (e_1(e/x))(e_2(e/x))
\]

\[
(\lambda y.e_1)(e/x) = \lambda y.(e_1(e/x)) \quad \text{where } y \neq x \text{ and } y \not\infv(e)
\]

Note that in the case for λ-abstractions, we require that the bound variable y be different from the variable x we are substituting for and that y not appear in the free variables of e, the expression we are substituting. Because we work up to α-equivalence, we can always pick y to satisfy these side conditions. For example, to calculate \((\lambda z.x z)((w y z)/x)\) we first rewrite \(\lambda z.x z\) to \(\lambda u.x\ u\) and then apply the substitution, obtaining \(\lambda u.(w y z)\ u\) as the result.