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CS 4110

Programming Languages & Logics

Lecture 8
Axiomatic Semantics

14 September 2012



Announcements

• Homework #3 due Monday at 11:59pm
• Foster office hours Monday 4-5pm in Upson 4137
• Rajkumar office hours Monday 5-6pm in 4135
• Around-the-clock help available on Piazza
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Review

Operational Semantics
• Describes how programs compute
• Relatively easy to deöne
• Close connection to implementations

Denotational Semantics
• Describes what programs compute
• Solid mathematical foundation
• Simpliöes many kinds of reasoning

Axiomatic Semantics
• A framework for reasoning about correctness
• History: Pioneered by Floyd & Hoare, reöned by Djikstra & Gries
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Axiomatic Semantics

To deöne an axiomatic semantics we need:
• A language for expressing assertions
• Rules for establishing the validity of particular assertions with

respect to speciöc programs

Assertions:
• The values of x and y are equal
• The values in a list l are sorted
• The program terminates
Assertion Languages:
• First-order logic: ∀, ∃,∧,∨, x = y, R(x), . . .
• Temporal or modal logic: �, ⋄, ϕ, . . .
• Special-purpose speciöcation languages: Alloy, Z3, Sugar, etc.
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Applications

• Proving correctness
• Documentation
• Test generation
• Symbolic execution
• Translation validation
• Bug önding
• Malware detection
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Pre-Conditions and Post-conditions

Assertions often used (informally) in code

..

// Precondition: 0 <= i < A.length
// Postcondition: returns ith element of A
public int get(int i) {

return A[i];
}

Very useful as documentation, but no guarantee they are correct.

Idea: make this rigorous by deöning the semantics of the language
in terms of pre-conditions and post-conditions!
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Partial Correctness

Recall the syntax of IMP:

a ∈ Aexp a ::= x | n | a1 + a2 | a1 × a2

b ∈ Bexp b ::= true | false | a1 < a2

c ∈ Com c ::= skip | x := a | c1; c2
| if b then c1 else c2 | while b do c

A partial correctness statement is a triple:

..{P} c {Q}

Meaning: If P holds and executing c terminates, then Q holds after c
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Total Correctness

Note that partial correctness speciöcations don’t ensure that the
program will terminate—this is why they are called “partial”

Sometimes we need to know that the program will terminate

A total correctness statement is a triple:

..[ P ] c [ Q ]

Meaning: if P holds, then c will terminate and Q holds after c

We’ll focus mostly on partial correctness.
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Example: Partial Correctness

..

{foo = 0 ∧ bar = i}

baz := 0;
while foo ̸= bar
do

baz := baz − 2;
foo := foo + 1

{baz = −2i}

Intuition: if we start with a store σ that maps foo to 0 and bar to an
integer i, and if the execution of the command terminates, then the
önal store σ′ will map baz to−2i
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Example: Total Correctness

..

[foo = 0 ∧ bar = i ∧ i ≥ 0]

baz := 0;
while foo ̸= bar
do

baz := baz − 2;
foo := foo + 1

[baz = −2i]

Intuition: if we start with a store σ that maps foo to 0 and bar to a
non-negative integer i, then the execution of the command will
terminate in a önal store σ′ will map baz to−2i
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Another Example

..

{foo = 0 ∧ bar = i}

baz := 0;
while foo ̸= bar
do

baz := baz + foo;
foo := foo + 1

{baz = i}

Question: is this partial correctness statement valid?
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Assertions

We’ll use the following language to write assertions:

i, j ∈ LVar

a ∈ Aexp ::=x | i | n | a1 + a2 | a1 × a2

P,Q ∈ Assn ::= true | false
| a1 < a2

| P1 ∧ P2 | P1 ∨ P2 | P1 ⇒ P2

| ¬P | ∀i. P | ∃i. P

Note that every boolean expression b is also an assertion.
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Satisfaction

Now we want to deöne what it means for a store σ to satisfy an
assertion

But before we can do this, we need an interpretion for the logical
variables

I : LVar → Int,

Ai[[n]](σ, I) = n
Ai[[x]](σ, I) = σ(x)
Ai[[i]](σ, I) = I(i)

Ai[[a1 + a2]](σ, I) = Ai[[a1]](σ, I) +Ai[[a2]](σ, I)
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Satisfaction

Next we deöne the satisfaction relation for assertions

Deönition (Assertation satisfaction)

σ �I true (always)
σ �I a1 < a2 ifAi[[a1]](σ, I) < Ai[[a2]](σ, I)
σ �I P1 ∧ P2 if σ �I P1 and σ �I P2

σ �I P1 ∨ P2 if σ �I P1 or σ �I P2

σ �I P1 ⇒ P2 if σ ̸�I P1 or σ �I P2

σ �I ¬P if σ ̸�I P
σ �I ∀i. P if ∀k ∈ Int. σ �I[i7→k] P
σ �I ∃i. P if ∃k ∈ Int. σ �I[i7→k] P
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Satisfaction

Next we deöne what it means for a command c to satisfy a partial
correctness statement.

Deönition (Partial correctness statement satisöability)

A partial correctness statement {P} c {Q} is satisöed in store σ and
interpretation I, written σ �I {P} c {Q}, if:

∀σ′. if σ �I P and C[[c]]σ = σ′ then σ′ �I Q
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Validity

Deönition (Assertion validity)

An assertion P is valid (written � P) if it is valid in any store, under
any interpretation: ∀σ, I. σ �I P

Deönition (Partial correctness statement validity)

A partial correctness triple is valid (written � {P} c {Q}), if it is valid
in any store and interpretation: ∀σ, I. σ �I {P} c {Q}.

Now we know what we mean when we say “assertion P holds” or
“partial correctness statement {P} c {Q} is valid.”
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Proving Speciöcations

How do we show that {P} c {Q} holds?

We know that {P} c {Q} is valid if it holds for all stores and
interpretations: ∀σ, I. σ �I {P} c {Q}.

Furthermore, showing that σ �I {P} c {Q} requires reasoning
about the denotation of c, as speciöed by the deönition of
satisfaction.

We can do this manually, but it turns out that there is a better way.

We can use a set of inference rules and axioms, called Hoare rules, to
directly derive valid partial correctness statements without having
to reason about stores, interpretations, and the execution of c.
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