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CS 4110

Programming Languages & Logics

Lecture 8
Axiomatic Semantics

14 September 2012



Announcements

• Homework #3 due Monday at 11:59pm
• Foster office hours Monday 4-5pm in Upson 4137
• Rajkumar office hours Monday 5-6pm in 4135
• Around-the-clock help available on Piazza
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Review

Operational Semantics
• Describes how programs compute
• Relatively easy to de ne
• Close connection to implementations

Denotational Semantics
• Describes what programs compute
• Solid mathematical foundation
• Simpli es many kinds of reasoning

Axiomatic Semantics
• A framework for reasoning about correctness
• History: Pioneered by Floyd & Hoare, re ned by Djikstra & Gries
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Axiomatic Semantics

To de ne an axiomatic semantics we need:
• A language for expressing assertions
• Rules for establishing the validity of particular assertions with

respect to speci c programs

Assertions:
• The values of x and y are equal
• The values in a list l are sorted
• The program terminates
Assertion Languages:
• First-order logic: ∀, ∃,∧,∨, x = y, R(x), . . .
• Temporal or modal logic: �, ⋄, ϕ, . . .
• Special-purpose speci cation languages: Alloy, Z3, Sugar, etc.
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Applications

• Proving correctness
• Documentation
• Test generation
• Symbolic execution
• Translation validation
• Bug nding
• Malware detection
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Pre-Conditions and Post-conditions

Assertions often used (informally) in code

..

// Precondition: 0 <= i < A.length
// Postcondition: returns ith element of A
public int get(int i) {

return A[i];
}

Very useful as documentation, but no guarantee they are correct.

Idea: make this rigorous by de ning the semantics of the language
in terms of pre-conditions and post-conditions!
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Partial Correctness

Recall the syntax of IMP:

a ∈ Aexp a ::= x | n | a1 + a2 | a1 × a2

b ∈ Bexp b ::= true | false | a1 < a2

c ∈ Com c ::= skip | x := a | c1; c2
| if b then c1 else c2 | while b do c

A partial correctness statement is a triple:

..{P} c {Q}

Meaning: If P holds and executing c terminates, then Q holds after c
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Total Correctness

Note that partial correctness speci cations don’t ensure that the
program will terminate—this is why they are called “partial”

Sometimes we need to know that the program will terminate

A total correctness statement is a triple:

..[ P ] c [ Q ]

Meaning: if P holds, then c will terminate and Q holds after c

We’ll focus mostly on partial correctness.
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Example: Partial Correctness

..

{foo = 0 ∧ bar = i}

baz := 0;
while foo ̸= bar
do

baz := baz − 2;
foo := foo + 1

{baz = −2i}

Intuition: if we start with a store σ that maps foo to 0 and bar to an
integer i, and if the execution of the command terminates, then the
nal store σ′ will map baz to−2i
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Example: Total Correctness

..

[foo = 0 ∧ bar = i ∧ i ≥ 0]

baz := 0;
while foo ̸= bar
do

baz := baz − 2;
foo := foo + 1

[baz = −2i]

Intuition: if we start with a store σ that maps foo to 0 and bar to a
non-negative integer i, then the execution of the command will
terminate in a nal store σ′ will map baz to−2i
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Another Example

..

{foo = 0 ∧ bar = i}

baz := 0;
while foo ̸= bar
do

baz := baz + foo;
foo := foo + 1

{baz = i}

Question: is this partial correctness statement valid?
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Assertions

We’ll use the following language to write assertions:

i, j ∈ LVar

a ∈ Aexp ::=x | i | n | a1 + a2 | a1 × a2

P,Q ∈ Assn ::= true | false
| a1 < a2

| P1 ∧ P2 | P1 ∨ P2 | P1 ⇒ P2

| ¬P | ∀i. P | ∃i. P

Note that every boolean expression b is also an assertion.
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Satisfaction

Now we want to de ne what it means for a store σ to satisfy an
assertion

But before we can do this, we need an interpretion for the logical
variables

I : LVar → Int,

Ai[[n]](σ, I) = n
Ai[[x]](σ, I) = σ(x)
Ai[[i]](σ, I) = I(i)

Ai[[a1 + a2]](σ, I) = Ai[[a1]](σ, I) +Ai[[a2]](σ, I)
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Satisfaction

Next we de ne the satisfaction relation for assertions

De nition (Assertation satisfaction)

σ �I true (always)
σ �I a1 < a2 ifAi[[a1]](σ, I) < Ai[[a2]](σ, I)
σ �I P1 ∧ P2 if σ �I P1 and σ �I P2

σ �I P1 ∨ P2 if σ �I P1 or σ �I P2

σ �I P1 ⇒ P2 if σ ̸�I P1 or σ �I P2

σ �I ¬P if σ ̸�I P
σ �I ∀i. P if ∀k ∈ Int. σ �I[i7→k] P
σ �I ∃i. P if ∃k ∈ Int. σ �I[i7→k] P
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Satisfaction

Next we de ne what it means for a command c to satisfy a partial
correctness statement.

De nition (Partial correctness statement satis ability)

A partial correctness statement {P} c {Q} is satis ed in store σ and
interpretation I, written σ �I {P} c {Q}, if:

∀σ′. if σ �I P and C[[c]]σ = σ′ then σ′ �I Q

15



Validity

De nition (Assertion validity)

An assertion P is valid (written � P) if it is valid in any store, under
any interpretation: ∀σ, I. σ �I P

De nition (Partial correctness statement validity)

A partial correctness triple is valid (written � {P} c {Q}), if it is valid
in any store and interpretation: ∀σ, I. σ �I {P} c {Q}.

Now we know what we mean when we say “assertion P holds” or
“partial correctness statement {P} c {Q} is valid.”
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Proving Speci cations

How do we show that {P} c {Q} holds?

We know that {P} c {Q} is valid if it holds for all stores and
interpretations: ∀σ, I. σ �I {P} c {Q}.

Furthermore, showing that σ �I {P} c {Q} requires reasoning
about the denotation of c, as speci ed by the de nition of
satisfaction.

We can do this manually, but it turns out that there is a better way.

We can use a set of inference rules and axioms, called Hoare rules, to
directly derive valid partial correctness statements without having
to reason about stores, interpretations, and the execution of c.
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