CS4110

Programming Languages & Logics

Lecture 8
Axiomatic Semantics

14 September 2012

Announcements

Homework #3 due Monday at 11:59pm

Foster office hours Monday 4-5pm in Upson 4137
Rajkumar office hours Monday 5-6pm in 4135
Around-the-clock help available on Piazza

Review

Operational Semantics

e Describes how programs compute
e Relatively easy to define
e (Close connection to implementations

w

Review

Operational Semantics

e Describes how programs compute

e Relatively easy to define

e (Close connection to implementations
Denotational Semantics

e Describes what programs compute

e Solid mathematical foundation

e Simplifies many kinds of reasoning

Review

Operational Semantics

e Describes how programs compute

e Relatively easy to define

e (Close connection to implementations
Denotational Semantics

e Describes what programs compute

e Solid mathematical foundation

e Simplifies many kinds of reasoning
Axiomatic Semantics

e A framework for reasoning about correctness
e History: Pioneered by Floyd & Hoare, refined by Djikstra & Gries

Axiomatic Semantics

To define an axiomatic semantics we need:
e Alanguage for expressing assertions

e Rules for establishing the validity of particular assertions with
respect to specific programs

Axiomatic Semantics

To define an axiomatic semantics we need:
e Alanguage for expressing assertions

e Rules for establishing the validity of particular assertions with
respect to specific programs

Assertions:

e The values of x and y are equal
e The valuesin a list / are sorted
e The program terminates

Axiomatic Semantics

To define an axiomatic semantics we need:
e Alanguage for expressing assertions

e Rules for establishing the validity of particular assertions with
respect to specific programs

Assertions:

e The values of x and y are equal

e The valuesin a list / are sorted

e The program terminates

Assertion Languages:

e First-order logic: ¥, 3, A, V,x =y, R(x), ...

e Temporal or modal logic: [, ¢, ¢, ...

e Special-purpose specification languages: Alloy, Z3, Sugar, etc.

Applications

e Proving correctness
e Documentation

e Jest generation

e Symbolic execution
e Translation validation
e Bug finding

e Malware detection

Pre-Conditions and Post-conditions

Assertions often used (informally) in code

// Precondition: 0 <=i < Alength
// Postcondition: returns ith element of A
public int get(int i) {

return Ali];

}

Very useful as documentation, but no guarantee they are correct.

Idea: make this rigorous by defining the semantics of the language
in terms of pre-conditions and post-conditions!

Partial Correctness

Recall the syntax of IMP:

a € Aexp ar=x|nla+a|a xa,
b € Bexp b ::= true | false | a, < a;
c € Com cu=skip|x:=a|c;o

| if bthen ¢, else ¢, | while b do ¢

A partial correctness statement is a triple:
{P}c{Q}

Meaning: If P holds and executing ¢ terminates, then Q holds after ¢

Total Correctness

Note that partial correctness specifications don't ensure that the
program will terminate—this is why they are called “partial”

Sometimes we need to know that the program will terminate

A total correctness statement is a triple:
[PlclQ]

Meaning: if P holds, then ¢ will terminate and Q holds after ¢

We'll focus mostly on partial correctness.

Example: Partial Correctness

{foo =0 A bar =i}
baz := 0;
while foo # bar
do
baz := baz — 2;
foo := foo + 1

{baz = —2i}

Intuition: if we start with a store ¢ that maps foo to 0 and bar to an
integer i, and if the execution of the command terminates, then the
final store ¢’ will map baz to —2/

Example: Total Correctness

[foo=0Abar=iAi>0]
baz :=0;
while foo # bar
do
baz := baz — 2;
foo :=foo + 1
[baz = —2]

Intuition: if we start with a store ¢ that maps foo to 0 and bar to a
non-negative integer /, then the execution of the command will
terminate in a final store o’ will map baz to —2i

Another Example

{foo = 0 A bar =i}

baz := 0;
while foo # bar
do

baz := baz + foo;
foo ;= foo + 1

{baz =i}

Question: is this partial correctness statement valid?

Assertions

WEe'll use the following language to write assertions:

I,j € LVar
achexp:=x|i|n|ja+a|a xa

P,Q € Assn ::= true | false
| o <a
| PYAP | PV P P =P,
| =P |ViP|3iP

Note that every boolean expression b is also an assertion.

Z

Satisfaction

Now we want to define what it means for a store o to satisfy an
assertion

But before we can do this, we need an interpretion for the logical
variables

I LVar — Int,

Satisfaction

Now we want to define what it means for a store o to satisfy an
assertion

But before we can do this, we need an interpretion for the logical
variables

I LVar — Int,
.A,'l[l’)]](O', /) =n
AR, 1) = ()
Al (o,) = 1(i)
Ailar + ax](o,1) = Aail(o, 1) + Aa:] (o,)

Satisfaction

Next we define the satisfaction relation for assertions

Definition (Assertation satisfaction)

o F, true (always)

ocFEa <a; if Affa:](o,) < Afa.](,))
ogF PrAP, ifoE Prand o E P,

o PiVEP ifo b PyoroE P,

ok Pr=P ifo B PyorokE P,

ok —P ifo & P

ok Vi.P ifVk € Int. 0 g P

o |:/ di. P if 3k € Int. o I:/[[Hk] P

Satisfaction

Next we define what it means for a command c to satisfy a partial
correctness statement.

Definition (Partial correctness statement satisfiability)

A partial correctness statement {P} ¢ {Q} is satisfied in store o and
interpretation /, written o , {P} c {Q}, if:

Vo'.ifo b Pand C[cJo = o' then o' Q

Validity

Definition (Assertion validity)

An assertion Pis valid (written P) if it is valid in any store, under
any interpretation: Vo, . o F, P

Definition (Partial correctness statement validity)

A partial correctness triple is valid (written £ {P} ¢ {Q}), if it is valid
in any store and interpretation: Vo, I. o E, {P} c {Q}.

Now we know what we mean when we say “assertion P holds" or
“partial correctness statement {P} ¢ {Q} is valid!

Proving Specifications

How do we show that {P} ¢ {Q} holds?

We know that {P} ¢ {Q} is valid if it holds for all stores and
interpretations: Vo, I. o E, {P} ¢ {Q}.

Furthermore, showing that o , {P} ¢ {Q} requires reasoning
about the denotation of ¢, as specified by the definition of
satisfaction.

We can do this manually, but it turns out that there is a better way.

We can use a set of inference rules and axioms, called Hoare rules, to
directly derive valid partial correctness statements without having
to reason about stores, interpretations, and the execution of c.

