CS4110

Programming Languages & Logics

Lecture 8
Denotational Semantics

10 September 2012

Announcements

Homework #2 due tonight at 11:59pm

Foster office hours today 4-5pm in Upson 4137
Rajkumar office hours today 5-6pm in 4135
Homework #3 goes out today

Recap

So far, we've:

Formalized the operational semantics of an imperative language
Developed the theory of inductive sets

Used this theory to prove formal properties:

» Determinism

» Soundness (via Progress and Preservation)
» Termination

» Equivalence of small-step and large-step semantics

Developed an implementation in OCaml|

Extended to IMP, a more complete imperative language

Today we'll develop a denotational semantics for IMP

Denotational Semantics

An operational semantics models how a program executes on an
idealized machine:

(0,e) — (o', €) (o,e) I (o', n)

Denotational Semantics

An operational semantics models how a program executes on an
idealized machine:

(0,e) — (o', €) (o,e) I (o', n)

A denotational semantics models what a program computes.

Denotational Semantics

An operational semantics models how a program executes on an
idealized machine:

(o,e) = (o', €) (o,e) I (o', n)

A denotational semantics models what a program computes.

More specifically, a denotational semantics defines the meaning of
a program directly, as a mathematical function:

C[c] € Store — Store

IMP

Syntax
a € Aexp ar=x|nla+a|a xa,
b € Bexp b ::= true | false | a, < a;
c € Com co=skip|x:=al|c;c

| if bthen ¢, else ¢, | while b do ¢

IMP

Syntax

a € Aexp ai=
b € Bexp b=
c € Com C =

Semantic Domains

Cl]
Ald]
B[o]

x|nlai+a|a xa,

true | false | a, < a;

skip | x:=a | q;

if b then ¢, else ¢, | while b do ¢

€ Store — Store
€ Store — Int
€ Store — Bool

IMP

Syntax
a € Aexp ar=x|nla+a|a xa,
b € Bexp b ::= true | false | a, < a;
c € Com co=skip|x:=al|c;c

| if bthen ¢, else ¢, | while b do ¢

Semantic Domains

Cl[c] € Store — Store
Ala] € Store — Int
B[b] € Store — Bool

Why partial functions?

Conventions

Represent functions f : A — B as sets of pairs:
S={(a,b)|aeAand b ="f(a) € B}

such that, for each g € A, there is at most one pair (g, -) in S.
Thatis, (a,b) € Sifand only if f(a) = b.

Convention #2: Define functions point-wise.

Equation C[c] = S defines the denotation function C[[-] on c.

Denotational Semantics of IMP

Aln] = {(e;n)}

Al = {(o,0(x))}
Allar + a2l = {(o,n) | (o,m) € A[ai] A (o,m) € Alax]l An=ni +ny}

B[true] = {(o, true)}
Blfalse] = {(c, false)}
Blar < a2] = {(o,true) | (o,m) € Alai] A (o,m) € Ala] Am <} U
{(o,false) | (o,n1) € A[ai] A (o,m) € Alax]l Am > ny}

Clskip] = {(0,0)}
Clx:=a] = {(o;ox=nl) | (o,n) € Ala]}
Clei o] = {(o,0") | 3" ((0,0") € Cl[ci] A (07, 0) € Cle:])}
C[if b then ¢; else ¢;] = {(o,0") | (o, true) € B[b] A (o,0") € C[ar]} U
{(c,0") | (0,false) € B[b] A (0,0") € C[c2]}
C[while b do c] = {(o, o) | (o, false) € B[b]} U
{(0,0") | (o,true) € B[b] A Jo”. ((o,0") € C[c] A
(¢”,0") € C[while b do c])}

Recursive Definitions

Problem: the last “definition” in our semantics is not really a
definition!

C[while b do] = {(o,0) | (o, false) € B[b]} U
{(o,0") | (o,true) € B[b] A Jo”. ((o,0") € C[] A
(¢”,0") € C[while b do c])}

Why?

Recursive Definitions

Problem: the last “definition” in our semantics is not really a
definition!

Clwhile b do] = {(o, o) | (o, false) € B[b]} U
{(o,0") | (o,true) € B[b] A Jo”. ((o,0") € C[] A
(¢”,0") € C[while b do c])}
Why?
It expresses C[while b do c] in terms of itself.
So this is not a definition but a recursive equation.

What we want is the solution to this equation.

Recursive Equations

Example:

0
) = {f(x—1)—|—2x—1

ifx=0
otherwise

Recursive Equations

Example:

0 {o ifx =0

fix—1)+2x—1 otherwise

Question: What functions satisfy this equation?

Recursive Equations

Example:

0 {o ifx =0

fix—1)+2x—1 otherwise

Question: What functions satisfy this equation?

Answer: f(x) = x

Recursive Equations

Example:

Recursive Equations

Example:

Question: Which functions satisfy this equation?

Recursive Equations

Example:

Question: Which functions satisfy this equation?

Answer: None!

Recursive Equations

Example:

h(x) =4 xh (g)

Recursive Equations

Example:

h(x) =4 xh (g)

Question: Which functions satisfy this equation?

Recursive Equations

Example:

h(x) =4 xh (g)

Question: Which functions satisfy this equation?

Answer: There are multiple solutions.

Solving Recursive Equations

Returning the first example...

1) {o if x = 0

fix—1)+2x—1 otherwise

Solving Recursive Equations

Can build a solution by taking successive approximations:
fO - @

Solving Recursive Equations

Can build a solution by taking successive approximations:

(@)

0
ifx=0
fo(x —1) +2x—1 otherwise

{(0,0)

Solving Recursive Equations

Can build a solution by taking successive approximations:

0
. _Jo ifx =0
" fo(x —1) +2x—1 otherwise
{

0 ifx=0
filtx—1)+2x—1 otherwise

Solving Recursive Equations

Can build a solution by taking successive approximations:

0

ifx=20
fo(x —1) +2x—1 otherwise
(0,0)}

(@)

ifx=0
ﬂx—1 + 2x—1 otherwise

{
{(0,0),(
{

(@)

ifx=0
H(x)+ 2x—1 otherwise

(0,0):(2,4)}

(@)

Solving Recursive Equations

We can model this process using a higher-order function F that
takes one approximation f, and returns the next approximation

fk_H:
F:(N—=N)— (N—N)
where

0 ifx=0
fix—1)+2x—1 otherwise

(F(N)(x) = {

Fixed Points

T
A solution to the recursive equation is an f such that f = F(f).

Definition: Given a function F : A — A, we have that g € Ais a fixed
point of Fif and only if F(a) = a.

Notation: Write a = fix(F) to indicate that a is a fixed point of F.
Idea: Compute fixed points iteratively, starting from the completely
undefined function. The fixed point is the limit of this process:
f = fix(F)
=0 UFD)UFFD)) UFFF©@)U...
= JF(®)
>0

Z

Denotational Semantics for while

Now we can complete our denotational semantics:

C[while b do c] = fix(F)

Denotational Semantics for while

Now we can complete our denotational semantics:

C[while b do c] = fix(F)
where
F(f) = {(o,0) | (0,false) € B[b]} U

{(c,0") | (o, true) € B[b]A
do”. ((0,0") € C[c] A (0”",0") €)}

