
.

.

CS 4110

Programming Languages & Logics

Lecture 8
Denotational Semantics

10 September 2012

Announcements

• Homework #2 due tonight at 11:59pm
• Foster office hours today 4-5pm in Upson 4137
• Rajkumar office hours today 5-6pm in 4135
• Homework #3 goes out today

2

Recap

So far, we’ve:
• Formalized the operational semantics of an imperative language
• Developed the theory of inductive sets
• Used this theory to prove formal properties:

I Determinism
I Soundness (via Progress and Preservation)
I Termination
I Equivalence of small-step and large-step semantics

• Developed an implementation in OCaml
• Extended to IMP, a more complete imperative language

Today we’ll develop a denotational semantics for IMP

3

Denotational Semantics

An operational semantics models how a program executes on an
idealized machine:

⟨σ, e⟩ → ⟨σ′, e′⟩ ⟨σ, e⟩ ⇓ ⟨σ′, n⟩

A denotational semantics models what a program computes.

More speciöcally, a denotational semantics deönes the meaning of
a program directly, as a mathematical function:

C[[c]] ∈ Store ⇀ Store

4

Denotational Semantics

An operational semantics models how a program executes on an
idealized machine:

⟨σ, e⟩ → ⟨σ′, e′⟩ ⟨σ, e⟩ ⇓ ⟨σ′, n⟩

A denotational semantics models what a program computes.

More speciöcally, a denotational semantics deönes the meaning of
a program directly, as a mathematical function:

C[[c]] ∈ Store ⇀ Store

4

Denotational Semantics

An operational semantics models how a program executes on an
idealized machine:

⟨σ, e⟩ → ⟨σ′, e′⟩ ⟨σ, e⟩ ⇓ ⟨σ′, n⟩

A denotational semantics models what a program computes.

More speciöcally, a denotational semantics deönes the meaning of
a program directly, as a mathematical function:

C[[c]] ∈ Store ⇀ Store

4

IMP

Syntax

a ∈ Aexp a ::= x | n | a1 + a2 | a1 × a2

b ∈ Bexp b ::= true | false | a1 < a2

c ∈ Com c ::= skip | x := a | c1; c2
| if b then c1 else c2 | while b do c

Semantic Domains

C[[c]] ∈ Store ⇀ Store
A[[a]] ∈ Store ⇀ Int
B[[b]] ∈ Store ⇀ Bool

Why partial functions?

5

IMP

Syntax

a ∈ Aexp a ::= x | n | a1 + a2 | a1 × a2

b ∈ Bexp b ::= true | false | a1 < a2

c ∈ Com c ::= skip | x := a | c1; c2
| if b then c1 else c2 | while b do c

Semantic Domains

C[[c]] ∈ Store ⇀ Store
A[[a]] ∈ Store ⇀ Int
B[[b]] ∈ Store ⇀ Bool

Why partial functions?

5

IMP

Syntax

a ∈ Aexp a ::= x | n | a1 + a2 | a1 × a2

b ∈ Bexp b ::= true | false | a1 < a2

c ∈ Com c ::= skip | x := a | c1; c2
| if b then c1 else c2 | while b do c

Semantic Domains

C[[c]] ∈ Store ⇀ Store
A[[a]] ∈ Store ⇀ Int
B[[b]] ∈ Store ⇀ Bool

Why partial functions?
5

Conventions

Represent functions f : A ⇀ B as sets of pairs:

S = {(a, b) | a ∈ A and b = f(a) ∈ B}

such that, for each a ∈ A, there is at most one pair (a,) in S.

That is, (a, b) ∈ S if and only if f(a) = b.

Convention #2: Deöne functions point-wise.

Equation C[[c]] = S deönes the denotation function C[[·]] on c.

6

Denotational Semantics of IMP

A[[n]] = {(σ, n)}
A[[x]] = {(σ, σ(x))}

A[[a1 + a2]] = {(σ, n) | (σ, n1) ∈ A[[a1]] ∧ (σ, n2) ∈ A[[a2]] ∧ n = n1 + n2}

B[[true]] = {(σ, true)}
B[[false]] = {(σ, false)}

B[[a1 < a2]] = {(σ, true) | (σ, n1) ∈ A[[a1]] ∧ (σ, n2) ∈ A[[a2]] ∧ n1 < n2} ∪
{(σ, false) | (σ, n1) ∈ A[[a1]] ∧ (σ, n2) ∈ A[[a2]] ∧ n1 ≥ n2}

C[[skip]] = {(σ, σ)}
C[[x := a]] = {(σ, σ[x 7→ n]) | (σ, n) ∈ A[[a]]}
C[[c1; c2]] = {(σ, σ′) | ∃σ′′. ((σ, σ′′) ∈ C[[c1]] ∧ (σ′′, σ′) ∈ C[[c2]])}

C[[if b then c1 else c2]] = {(σ, σ′) | (σ, true) ∈ B[[b]] ∧ (σ, σ′) ∈ C[[c1]]} ∪
{(σ, σ′) | (σ, false) ∈ B[[b]] ∧ (σ, σ′) ∈ C[[c2]]}

C[[while b do c]] = {(σ, σ) | (σ, false) ∈ B[[b]]} ∪
{(σ, σ′) | (σ, true) ∈ B[[b]] ∧ ∃σ′′. ((σ, σ′′) ∈ C[[c]] ∧

(σ′′, σ′) ∈ C[[while b do c]])}

7

Recursive Deönitions

Problem: the last “deönition” in our semantics is not really a
deönition!

C[[while b do c]] = {(σ, σ) | (σ, false) ∈ B[[b]]} ∪
{(σ, σ′) | (σ, true) ∈ B[[b]] ∧ ∃σ′′. ((σ, σ′′) ∈ C[[c]] ∧

(σ′′, σ′) ∈ C[[while b do c]])}

Why?

It expresses C[[while b do c]] in terms of itself.

So this is not a deönition but a recursive equation.

What we want is the solution to this equation.

8

Recursive Deönitions

Problem: the last “deönition” in our semantics is not really a
deönition!

C[[while b do c]] = {(σ, σ) | (σ, false) ∈ B[[b]]} ∪
{(σ, σ′) | (σ, true) ∈ B[[b]] ∧ ∃σ′′. ((σ, σ′′) ∈ C[[c]] ∧

(σ′′, σ′) ∈ C[[while b do c]])}

Why?

It expresses C[[while b do c]] in terms of itself.

So this is not a deönition but a recursive equation.

What we want is the solution to this equation.

8

Recursive Equations

Example:

f(x) =

{
0 if x = 0
f(x− 1) + 2x− 1 otherwise

9

Recursive Equations

Example:

f(x) =

{
0 if x = 0
f(x− 1) + 2x− 1 otherwise

Question: What functions satisfy this equation?

9

Recursive Equations

Example:

f(x) =

{
0 if x = 0
f(x− 1) + 2x− 1 otherwise

Question: What functions satisfy this equation?

Answer: f(x) = x2

9

Recursive Equations

Example:
g(x) = g(x) + 1

9

Recursive Equations

Example:
g(x) = g(x) + 1

Question: Which functions satisfy this equation?

9

Recursive Equations

Example:
g(x) = g(x) + 1

Question: Which functions satisfy this equation?

Answer: None!

9

Recursive Equations

Example:

h(x) = 4 × h
(x
2

)

9

Recursive Equations

Example:

h(x) = 4 × h
(x
2

)

Question: Which functions satisfy this equation?

9

Recursive Equations

Example:

h(x) = 4 × h
(x
2

)

Question: Which functions satisfy this equation?

Answer: There are multiple solutions.

9

Solving Recursive Equations

Returning the örst example...

f(x) =

{
0 if x = 0
f(x− 1) + 2x− 1 otherwise

10

Solving Recursive Equations

Can build a solution by taking successive approximations:

f0 = ∅

f1 =

{
0 if x = 0
f0(x− 1) + 2x− 1 otherwise

= {(0, 0)}

f2 =

{
0 if x = 0
f1(x− 1) + 2x− 1 otherwise

= {(0, 0), (1, 1)}

f3 =

{
0 if x = 0
f2(x− 1) + 2x− 1 otherwise

= {(0, 0), (1, 1), (2, 4)}
...

10

Solving Recursive Equations

Can build a solution by taking successive approximations:

f0 = ∅

f1 =

{
0 if x = 0
f0(x− 1) + 2x− 1 otherwise

= {(0, 0)}

f2 =

{
0 if x = 0
f1(x− 1) + 2x− 1 otherwise

= {(0, 0), (1, 1)}

f3 =

{
0 if x = 0
f2(x− 1) + 2x− 1 otherwise

= {(0, 0), (1, 1), (2, 4)}
...

10

Solving Recursive Equations

Can build a solution by taking successive approximations:

f0 = ∅

f1 =

{
0 if x = 0
f0(x− 1) + 2x− 1 otherwise

= {(0, 0)}

f2 =

{
0 if x = 0
f1(x− 1) + 2x− 1 otherwise

= {(0, 0), (1, 1)}

f3 =

{
0 if x = 0
f2(x− 1) + 2x− 1 otherwise

= {(0, 0), (1, 1), (2, 4)}
...

10

Solving Recursive Equations

Can build a solution by taking successive approximations:

f0 = ∅

f1 =

{
0 if x = 0
f0(x− 1) + 2x− 1 otherwise

= {(0, 0)}

f2 =

{
0 if x = 0
f1(x− 1) + 2x− 1 otherwise

= {(0, 0), (1, 1)}

f3 =

{
0 if x = 0
f2(x− 1) + 2x− 1 otherwise

= {(0, 0), (1, 1), (2, 4)}
...

10

Solving Recursive Equations

We can model this process using a higher-order function F that
takes one approximation fk and returns the next approximation
fk+1:

F : (N ⇀ N) → (N ⇀ N)

where

(F(f))(x) =

{
0 if x = 0
f(x− 1) + 2x− 1 otherwise

11

Fixed Points

A solution to the recursive equation is an f such that f = F(f).

Deönition: Given a function F : A → A, we have that a ∈ A is a öxed
point of F if and only if F(a) = a.

Notation: Write a = öx(F) to indicate that a is a öxed point of F.

Idea: Compute öxed points iteratively, starting from the completely
undeöned function. The öxed point is the limit of this process:

f = öx(F)
= f0 ∪ f1 ∪ f2 ∪ f3 ∪ . . .

= ∅ ∪ F(∅) ∪ F(F(∅)) ∪ F(F(F(∅))) ∪ . . .

=
∞∪
i≥0

Fi(∅)

12

Denotational Semantics forwhile

Now we can complete our denotational semantics:

C[[while b do c]] = öx(F)

where

F(f) = {(σ, σ) | (σ, false) ∈ B[[b]]} ∪
{(σ, σ′) | (σ, true) ∈ B[[b]]∧

∃σ′′. ((σ, σ′′) ∈ C[[c]] ∧ (σ′′, σ′) ∈ f)}

13

Denotational Semantics forwhile

Now we can complete our denotational semantics:

C[[while b do c]] = öx(F)

where

F(f) = {(σ, σ) | (σ, false) ∈ B[[b]]} ∪
{(σ, σ′) | (σ, true) ∈ B[[b]]∧

∃σ′′. ((σ, σ′′) ∈ C[[c]] ∧ (σ′′, σ′) ∈ f)}

13

