
.

.

CS 4110

Programming Languages & Logics

Lecture 2
Introduction to Semantics

24 August 2012

Announcements

OCaml Demo
• 7-9pm tonight in Upson B7

Teaching Assistants
• Brittany Nkounkou
• Raghu Rajkumar

Homework #1
• Out: Monday, August 27th
• Due: Monday, September 3rd
• Distributed via CMS

2

Semantics

Question: What is the meaning of a program?

Answer: We could execute the program using an interpreter or a
compiler, or we could consult a manual...

.

. .

...but neither of these is a satisfactory solution.

3

Semantics

Question: What is the meaning of a program?

Answer: We could execute the program using an interpreter or a
compiler, or we could consult a manual...

.

. .

...but neither of these is a satisfactory solution.

3

Formal Semantics

Three Approaches

• Operational ⟨σ, e⟩ −→ ⟨σ′, e′⟩
I Model program by execution on abstract machine
I Useful for implementing compilers and interpreters

• Axiomatic ⊢ {ϕ} e {ψ}
I Model program by the logical formulas it obeys
I Useful for proving program correctness

• Denotational: [[e]]
I Model program as mathematical objects
I Useful for theoretical foundations

4

Arithmetic Expressions

Syntax

A language of integer arithmetic expressions with assignment.

Metavariables:
x, y, z ∈ Var
n,m ∈ Int

e ∈ Exp

BNF Grammar:

e ::= x | n | e1 + e2 | e1 * e2 | x := e1 ; e2

6

Syntax

A language of integer arithmetic expressions with assignment.

Metavariables:
x, y, z ∈ Var
n,m ∈ Int

e ∈ Exp

BNF Grammar:

e ::= x | n | e1 + e2 | e1 * e2 | x := e1 ; e2

6

Syntax

A language of integer arithmetic expressions with assignment.

Metavariables:
x, y, z ∈ Var
n,m ∈ Int

e ∈ Exp

BNF Grammar:

e ::= x | n | e1 + e2 | e1 * e2 | x := e1 ; e2

6

Ambiguity

What expression does the string “1 + 2 * 3” describe?

There are two possible parse trees:

..+

.1 .*

.2 .3

.*

.+

.1 .2

.3

In this course, we will distinguish abstract syntax from concrete
syntax, and focus primarily on abstract syntax (using conventions
or parentheses at the concrete level to disambiguate as needed).

7

Ambiguity

What expression does the string “1 + 2 * 3” describe?

There are two possible parse trees:

..+

.1 .*

.2 .3

.*

.+

.1 .2

.3

In this course, we will distinguish abstract syntax from concrete
syntax, and focus primarily on abstract syntax (using conventions
or parentheses at the concrete level to disambiguate as needed).

7

Ambiguity

What expression does the string “1 + 2 * 3” describe?

There are two possible parse trees:

..+

.1 .*

.2 .3

.*

.+

.1 .2

.3

In this course, we will distinguish abstract syntax from concrete
syntax, and focus primarily on abstract syntax (using conventions
or parentheses at the concrete level to disambiguate as needed).

7

Representing Expressions

BNF Grammar:

e ::= x | n | e1 + e2 | e1 * e2 | x := e1 ; e2

8

Representing Expressions

BNF Grammar:

e ::= x | n | e1 + e2 | e1 * e2 | x := e1 ; e2

OCaml:

..

type exp = Var of string
| Int of int
| Add of exp * exp
| Mul of exp * exp
| Assgn of string * exp * exp

Example: Mul(Int 2, Add(Var ”foo”, Int 1))

8

Representing Expressions

BNF Grammar:

e ::= x | n | e1 + e2 | e1 * e2 | x := e1 ; e2

Java:

..

abstract class Expr { }
class Var extends Expr { String name; .. }
class Int extends Expr { int val; ... }
class Add extends Expr { Expr exp1, exp2; ... }
class Mul extends Expr { Expr exp1, exp2; ... }
class Assgn extends Expr { String var, Expr exp1, exp2; .. }

Example: new Mul(new Int(2), new Add(new Var(”foo”), new Int(1)))
8

Quiz

• 7 + (4 * 2) evaluates to ...?

15
• i := 6 + 1 ; 2 * 3 * i evaluates to

42

• x + 1 evaluates to

nothing?

The rest of this lecture will make these intuitions precise...

9

Quiz

• 7 + (4 * 2) evaluates to 15

• i := 6 + 1 ; 2 * 3 * i evaluates to

42

• x + 1 evaluates to

nothing?

The rest of this lecture will make these intuitions precise...

9

Quiz

• 7 + (4 * 2) evaluates to 15
• i := 6 + 1 ; 2 * 3 * i evaluates to ...?

42
• x + 1 evaluates to

nothing?

The rest of this lecture will make these intuitions precise...

9

Quiz

• 7 + (4 * 2) evaluates to 15
• i := 6 + 1 ; 2 * 3 * i evaluates to 42

• x + 1 evaluates to

nothing?

The rest of this lecture will make these intuitions precise...

9

Quiz

• 7 + (4 * 2) evaluates to 15
• i := 6 + 1 ; 2 * 3 * i evaluates to 42
• x + 1 evaluates to ...?

nothing?

The rest of this lecture will make these intuitions precise...

9

Quiz

• 7 + (4 * 2) evaluates to 15
• i := 6 + 1 ; 2 * 3 * i evaluates to 42
• x + 1 evaluates to nothing?

The rest of this lecture will make these intuitions precise...

9

Quiz

• 7 + (4 * 2) evaluates to 15
• i := 6 + 1 ; 2 * 3 * i evaluates to 42
• x + 1 evaluates to nothing?

The rest of this lecture will make these intuitions precise...

9

Mathematical Preliminaries

Binary Relations

The product of two sets A and B, written A× B, contains all ordered
pairs (a, b) with a ∈ A and b ∈ B.

A binary relation on A and B is just a subset R ⊆ A× B.

Given a binary relation R ⊆ A× B, the set A is called the domain of
R and B is called the range (or codomain) of R.

Some Important Relations

• empty – ∅
• total – A× B
• identity on A – {(a, a) | a ∈ A}.
• composition R; S – {(a, c) | ∃b. (a, b) ∈ R ∧ (b, c) ∈ S}

11

Binary Relations

The product of two sets A and B, written A× B, contains all ordered
pairs (a, b) with a ∈ A and b ∈ B.

A binary relation on A and B is just a subset R ⊆ A× B.

Given a binary relation R ⊆ A× B, the set A is called the domain of
R and B is called the range (or codomain) of R.

Some Important Relations

• empty – ∅
• total – A× B
• identity on A – {(a, a) | a ∈ A}.
• composition R; S – {(a, c) | ∃b. (a, b) ∈ R ∧ (b, c) ∈ S}

11

Binary Relations

The product of two sets A and B, written A× B, contains all ordered
pairs (a, b) with a ∈ A and b ∈ B.

A binary relation on A and B is just a subset R ⊆ A× B.

Given a binary relation R ⊆ A× B, the set A is called the domain of
R and B is called the range (or codomain) of R.

Some Important Relations

• empty – ∅
• total – A× B
• identity on A – {(a, a) | a ∈ A}.
• composition R; S – {(a, c) | ∃b. (a, b) ∈ R ∧ (b, c) ∈ S}

11

Binary Relations

The product of two sets A and B, written A× B, contains all ordered
pairs (a, b) with a ∈ A and b ∈ B.

A binary relation on A and B is just a subset R ⊆ A× B.

Given a binary relation R ⊆ A× B, the set A is called the domain of
R and B is called the range (or codomain) of R.

Some Important Relations

• empty – ∅
• total – A× B
• identity on A – {(a, a) | a ∈ A}.
• composition R; S – {(a, c) | ∃b. (a, b) ∈ R ∧ (b, c) ∈ S}

11

Functions

A (total) function f is a binary relation f ⊆ A× B with the property
that every a ∈ A is related to exactly one b ∈ B

When f is a function, we usually write f : A → B instead of f ⊆ A× B

The domain and range of f are de ned the same way as for relations

The image of f is the set of elements b ∈ B that are mapped to by at
least one a ∈ A. More formally: image(f) , {f(a) | a ∈ A}

12

Functions

A (total) function f is a binary relation f ⊆ A× B with the property
that every a ∈ A is related to exactly one b ∈ B

When f is a function, we usually write f : A → B instead of f ⊆ A× B

The domain and range of f are de ned the same way as for relations

The image of f is the set of elements b ∈ B that are mapped to by at
least one a ∈ A. More formally: image(f) , {f(a) | a ∈ A}

12

Functions

A (total) function f is a binary relation f ⊆ A× B with the property
that every a ∈ A is related to exactly one b ∈ B

When f is a function, we usually write f : A → B instead of f ⊆ A× B

The domain and range of f are de ned the same way as for relations

The image of f is the set of elements b ∈ B that are mapped to by at
least one a ∈ A. More formally: image(f) , {f(a) | a ∈ A}

12

Functions

A (total) function f is a binary relation f ⊆ A× B with the property
that every a ∈ A is related to exactly one b ∈ B

When f is a function, we usually write f : A → B instead of f ⊆ A× B

The domain and range of f are de ned the same way as for relations

The image of f is the set of elements b ∈ B that are mapped to by at
least one a ∈ A. More formally: image(f) , {f(a) | a ∈ A}

12

Some Important Functions

Given two functions f : A → B and g : B → C, the composition of f
and g is de ned by: (g ◦ f)(x) = g(f(x)) Note order!

A partial function f : A⇀ B is a total function f : A′ → B on a set
A′ ⊆ A. The notation dom(f) refers to A′.

A function f : A → B is said to be injective (or one-to-one) if and only
if a1 ̸= a2 implies f(a1) ̸= f(a2).

A function f : A → B is said to be surjective (or onto) if and only if
the image of f is B.

13

Some Important Functions

Given two functions f : A → B and g : B → C, the composition of f
and g is de ned by: (g ◦ f)(x) = g(f(x)) Note order!

A partial function f : A⇀ B is a total function f : A′ → B on a set
A′ ⊆ A. The notation dom(f) refers to A′.

A function f : A → B is said to be injective (or one-to-one) if and only
if a1 ̸= a2 implies f(a1) ̸= f(a2).

A function f : A → B is said to be surjective (or onto) if and only if
the image of f is B.

13

Some Important Functions

Given two functions f : A → B and g : B → C, the composition of f
and g is de ned by: (g ◦ f)(x) = g(f(x)) Note order!

A partial function f : A⇀ B is a total function f : A′ → B on a set
A′ ⊆ A. The notation dom(f) refers to A′.

A function f : A → B is said to be injective (or one-to-one) if and only
if a1 ̸= a2 implies f(a1) ̸= f(a2).

A function f : A → B is said to be surjective (or onto) if and only if
the image of f is B.

13

Some Important Functions

Given two functions f : A → B and g : B → C, the composition of f
and g is de ned by: (g ◦ f)(x) = g(f(x)) Note order!

A partial function f : A⇀ B is a total function f : A′ → B on a set
A′ ⊆ A. The notation dom(f) refers to A′.

A function f : A → B is said to be injective (or one-to-one) if and only
if a1 ̸= a2 implies f(a1) ̸= f(a2).

A function f : A → B is said to be surjective (or onto) if and only if
the image of f is B.

13

Operational Semantics

Overview

An operational semantics describes how a program executes on
some (typically idealized) abstract machine.

A small-step semantics describes how such an execution proceeds
in terms of successive reductions: ⟨σ, e⟩ −→ ⟨σ′, e′⟩

For our language, a con guration ⟨σ, e⟩ has two components:
• a store σ that records the values of variables
• and the expression e being evaluated

More formally,
Store , Var⇀ Int

Config , Store× Exp

Note that a store is a partial function from variables to integers.

15

Overview

An operational semantics describes how a program executes on
some (typically idealized) abstract machine.

A small-step semantics describes how such an execution proceeds
in terms of successive reductions: ⟨σ, e⟩ −→ ⟨σ′, e′⟩

For our language, a con guration ⟨σ, e⟩ has two components:
• a store σ that records the values of variables
• and the expression e being evaluated

More formally,
Store , Var⇀ Int

Config , Store× Exp

Note that a store is a partial function from variables to integers.

15

Overview

An operational semantics describes how a program executes on
some (typically idealized) abstract machine.

A small-step semantics describes how such an execution proceeds
in terms of successive reductions: ⟨σ, e⟩ −→ ⟨σ′, e′⟩

For our language, a con guration ⟨σ, e⟩ has two components:
• a store σ that records the values of variables
• and the expression e being evaluated

More formally,
Store , Var⇀ Int

Config , Store× Exp

Note that a store is a partial function from variables to integers.

15

Overview

An operational semantics describes how a program executes on
some (typically idealized) abstract machine.

A small-step semantics describes how such an execution proceeds
in terms of successive reductions: ⟨σ, e⟩ −→ ⟨σ′, e′⟩

For our language, a con guration ⟨σ, e⟩ has two components:
• a store σ that records the values of variables
• and the expression e being evaluated

More formally,
Store , Var⇀ Int

Config , Store× Exp

Note that a store is a partial function from variables to integers.

15

Operational Semantics

The small-step operational semantics itself is a relation on
con gurations—i.e., a subset of Config× Config.

Notation: ⟨σ, e⟩ −→ ⟨σ′, e′⟩
Question: How should we de ne this relation? Note that there are
an in nite number of con gurations and possible steps!

Answer: de ne it inductively, using inference rules:

p = m+ n

⟨σ, n +m⟩ −→ ⟨σ, p⟩
Add

Intuitively, if facts above the line hold, then facts below the line
hold. More formally, “−→” is the smallest relation “closed” under
the inference rules.

16

Operational Semantics

The small-step operational semantics itself is a relation on
con gurations—i.e., a subset of Config× Config.

Notation: ⟨σ, e⟩ −→ ⟨σ′, e′⟩

Question: How should we de ne this relation? Note that there are
an in nite number of con gurations and possible steps!

Answer: de ne it inductively, using inference rules:

p = m+ n

⟨σ, n +m⟩ −→ ⟨σ, p⟩
Add

Intuitively, if facts above the line hold, then facts below the line
hold. More formally, “−→” is the smallest relation “closed” under
the inference rules.

16

Operational Semantics

The small-step operational semantics itself is a relation on
con gurations—i.e., a subset of Config× Config.

Notation: ⟨σ, e⟩ −→ ⟨σ′, e′⟩
Question: How should we de ne this relation?

Note that there are
an in nite number of con gurations and possible steps!

Answer: de ne it inductively, using inference rules:

p = m+ n

⟨σ, n +m⟩ −→ ⟨σ, p⟩
Add

Intuitively, if facts above the line hold, then facts below the line
hold. More formally, “−→” is the smallest relation “closed” under
the inference rules.

16

Operational Semantics

The small-step operational semantics itself is a relation on
con gurations—i.e., a subset of Config× Config.

Notation: ⟨σ, e⟩ −→ ⟨σ′, e′⟩
Question: How should we de ne this relation? Note that there are
an in nite number of con gurations and possible steps!

Answer: de ne it inductively, using inference rules:

p = m+ n

⟨σ, n +m⟩ −→ ⟨σ, p⟩
Add

Intuitively, if facts above the line hold, then facts below the line
hold. More formally, “−→” is the smallest relation “closed” under
the inference rules.

16

Operational Semantics

The small-step operational semantics itself is a relation on
con gurations—i.e., a subset of Config× Config.

Notation: ⟨σ, e⟩ −→ ⟨σ′, e′⟩
Question: How should we de ne this relation? Note that there are
an in nite number of con gurations and possible steps!

Answer: de ne it inductively, using inference rules:

p = m+ n

⟨σ, n +m⟩ −→ ⟨σ, p⟩
Add

Intuitively, if facts above the line hold, then facts below the line
hold. More formally, “−→” is the smallest relation “closed” under
the inference rules.

16

Operational Semantics

The small-step operational semantics itself is a relation on
con gurations—i.e., a subset of Config× Config.

Notation: ⟨σ, e⟩ −→ ⟨σ′, e′⟩
Question: How should we de ne this relation? Note that there are
an in nite number of con gurations and possible steps!

Answer: de ne it inductively, using inference rules:

p = m+ n

⟨σ, n +m⟩ −→ ⟨σ, p⟩
Add

Intuitively, if facts above the line hold, then facts below the line
hold. More formally, “−→” is the smallest relation “closed” under
the inference rules.

16

Variables

n = σ(x)

⟨σ, x⟩ −→ ⟨σ, n⟩
Var

17

Addition

⟨σ, e1⟩ −→ ⟨σ′, e′1⟩
⟨σ, e1 + e2⟩ −→ ⟨σ′, e′1 + e2⟩

LAdd

⟨σ, e2⟩ −→ ⟨σ′, e′2⟩
⟨σ, n + e2⟩ −→ ⟨σ′, n + e′2⟩

RAdd

p = m+ n

⟨σ, n +m⟩ −→ ⟨σ, p⟩
Add

18

Addition

⟨σ, e1⟩ −→ ⟨σ′, e′1⟩
⟨σ, e1 + e2⟩ −→ ⟨σ′, e′1 + e2⟩

LAdd

⟨σ, e2⟩ −→ ⟨σ′, e′2⟩
⟨σ, n + e2⟩ −→ ⟨σ′, n + e′2⟩

RAdd

p = m+ n

⟨σ, n +m⟩ −→ ⟨σ, p⟩
Add

18

Addition

⟨σ, e1⟩ −→ ⟨σ′, e′1⟩
⟨σ, e1 + e2⟩ −→ ⟨σ′, e′1 + e2⟩

LAdd

⟨σ, e2⟩ −→ ⟨σ′, e′2⟩
⟨σ, n + e2⟩ −→ ⟨σ′, n + e′2⟩

RAdd

p = m+ n

⟨σ, n +m⟩ −→ ⟨σ, p⟩
Add

18

Multiplication

⟨σ, e1⟩ −→ ⟨σ′, e′1⟩
⟨σ, e1 * e2⟩ −→ ⟨σ′, e′1 * e2⟩

LMul

⟨σ, e2⟩ −→ ⟨σ′, e′2⟩
⟨σ, n * e2⟩ −→ ⟨σ′, n * e′2⟩

RMul

p = m× n

⟨σ,m * n⟩ −→ ⟨σ, p⟩
Mul

19

Multiplication

⟨σ, e1⟩ −→ ⟨σ′, e′1⟩
⟨σ, e1 * e2⟩ −→ ⟨σ′, e′1 * e2⟩

LMul

⟨σ, e2⟩ −→ ⟨σ′, e′2⟩
⟨σ, n * e2⟩ −→ ⟨σ′, n * e′2⟩

RMul

p = m× n

⟨σ,m * n⟩ −→ ⟨σ, p⟩
Mul

19

Multiplication

⟨σ, e1⟩ −→ ⟨σ′, e′1⟩
⟨σ, e1 * e2⟩ −→ ⟨σ′, e′1 * e2⟩

LMul

⟨σ, e2⟩ −→ ⟨σ′, e′2⟩
⟨σ, n * e2⟩ −→ ⟨σ′, n * e′2⟩

RMul

p = m× n

⟨σ,m * n⟩ −→ ⟨σ, p⟩
Mul

19

Assignment

⟨σ, e1⟩ −→ ⟨σ′, e′1⟩
⟨σ, x := e1 ; e2⟩ −→ ⟨σ′, x := e′1 ; e2⟩

Assgn1

σ′ = σ[x 7→ n]

⟨σ, x := n ; e2⟩ −→ ⟨σ′, e2⟩
Assgn

Notation: σ[x 7→ n]maps x to n and otherwise behaves like σ

20

Assignment

⟨σ, e1⟩ −→ ⟨σ′, e′1⟩
⟨σ, x := e1 ; e2⟩ −→ ⟨σ′, x := e′1 ; e2⟩

Assgn1

σ′ = σ[x 7→ n]

⟨σ, x := n ; e2⟩ −→ ⟨σ′, e2⟩
Assgn

Notation: σ[x 7→ n]maps x to n and otherwise behaves like σ

20

Operational Semantics

n = σ(x)

⟨σ, x⟩ → ⟨σ, n⟩
Var

⟨σ, e1⟩ → ⟨σ′, e′1⟩
⟨σ, e1 + e2⟩ → ⟨σ′, e′1 + e2⟩

LAdd ⟨σ, e2⟩ → ⟨σ′, e′2⟩
⟨σ, n + e2⟩ → ⟨σ′, n + e′2⟩

RAdd

p = m+ n

⟨σ, n +m⟩ → ⟨σ, p⟩
Add ⟨σ, e1⟩ → ⟨σ′, e′1⟩

⟨σ, e1 * e2⟩ → ⟨σ′, e′1 * e2⟩
LMul

⟨σ, e2⟩ → ⟨σ′, e′2⟩
⟨σ, n * e2⟩ → ⟨σ′, n * e′2⟩

RMul p = m× n

⟨σ,m * n⟩ → ⟨σ, p⟩
Mul

⟨σ, e1⟩ → ⟨σ′, e′1⟩
⟨σ, x := e1 ; e2⟩ → ⟨σ′, x := e′1 ; e2⟩

Assgn1 σ′ = σ[x 7→ n]

⟨σ, x := n ; e2⟩ → ⟨σ′, e2⟩
Assgn

21

