
.

. .
CS 4110 – Programming Languages and Logics
Lecture #26: Existential Types

.

1 Modules

Simple languages, such as C and FORTRAN, often have a single global namespace. This causes problems in
large programs due to name collisions—i.e., two different programmers (or pieces of code) using the same
name for different purposes—are likely. In addition, it often leads to situations wheremultiple components
of a program are more tightly coupled, since one component may use a name de ned by the other.

Modular programming addresses these issues. A module is a collection of named entities that are related
to each other in some way. Modules provide separate namespaces: different modules have different name
spaces, and so can freely use names without worrying about name collisions.

Typically, a module can choose what names and entities to export (i.e., which names to allow to be used
outside of the module), and what to keep hidden. The exported entities are declared in an interface, and the
interface typically does not export details of the implementation. This means that different modules can
implement the same interface in different ways. Also, by hiding the details of module implementation, and
preventing access to these details except through the exported interface, programmers of modules can be
con dent that code invariants are not broken.

Packages in Java are a form of modules. A package provides a separate namespace (we can have a
class called Foo in package p1 and package p2 without any con icts). A package can hide details of its
implementation by using private and package-level visibility.

How do we access the names exported by a module? Given a module m that exports an entity names
x, common syntax for accessing x is m.x. Many languages also provide a mechanism to use all exported
names of a module using shorter notation—e.g., “Openm”, or “importm”, or “usingm”.

2 Existential types

In this section, we will extend the simply-typed lambda calculus with existential types (and records). An
existential type is written ∃X. τ , where type variableX may occur in τ . If a value has type ∃X. τ , it means
that it is a pair {τ ′, v} of a type τ ′ and a value v, such that v has type τ{τ ′/X} .

We introduce a language construct to create existential values, and a construct to use existential values.
The syntax of the new language is given by the following grammar.

e ::= x | λx :τ. e | e1 e2 | n | e1 + e2

| { l1 = e1, . . . , ln = en } | e.l
| pack {τ1, e} as ∃X. τ2 | unpack {X,x} = e1 in e2

v ::= n | λx :τ. e | { l1 = v1, . . . , ln = vn } | pack {τ1, v} as ∃X. τ2

τ ::= int | τ1 → τ2 | { l1 :τ1, . . . , ln :τn } | ∃X. τ

1

Note that in this grammar, we annotate existential values with their existential type. The construct
to create an existential value, pack {τ1, e} as ∃X. τ2, is often called packing, and the construct to use an
existential value is called unpacking. Before we present the operational semantics and typing rules, let’s see
an example to get an intuition for packing and unpacking.

Here we create an existential value that implements a counter, without revealing details of its imple-
mentation.

let counterADT =
pack {int, { new = 0, get = λi : int. i, inc = λi : int. i+ 1 } }
as ∃Counter. { new : Counter, get : Counter → int, inc : Counter → Counter }

in . . .

The abstract type name is Counter, and its concrete representation is int. The type of the variable counterADT
is ∃Counter. { new : Counter, get : Counter → int, inc : Counter → Counter }. We can use the existential
value counterADT as follows.

unpack {C, c} = counterADT in
let y = c.new in
c.get (c.inc (c.inc y))

Note that we annotate the pack construct with the existential type. That is, we explicitly state the type

∃Counter. {new :Counter, get :Counter → int, inc :Counter → Counter}.

Why do we do this? Without this annotation, we would not know which occurrences of the witness type
are intended to be replaced with the type variable, and which are intended to be left as the witness type.

In the counter example above, the type of expressions λi : int. i and λi : int. i+1 are both int → int, but
one is the implementation of get, of type Counter → int and the other is the implementation of inc, of type
Counter → Counter.

We now de ne the operational semantics for existentials. We add two new evaluation contexts, and
one evaluation rule for unpacking an existential value.

E ::= · · · | pack {τ1, E} as ∃X. τ2 | unpack {X,x} = E in e

unpack {X,x} = (pack {τ1, v} as ∃Y. τ2) in e → e{v/x}{τ1/X}
The typing rules ensure that existential values are used correctly.

∆,Γ ⊢ e :τ2{τ1/X} ∆ ⊢ ∃X. τ2 ok

∆,Γ ⊢ pack {τ1, e} as ∃X. τ2 :∃X. τ2

∆,Γ ⊢ e1 :∃X. τ1 ∆ ∪ {X},Γ, x :τ1 ⊢ e2 :τ2 ∆ ⊢ τ2 ok

∆,Γ ⊢ unpack {X,x} = e1 in e2 :τ2

Note that in the typing rule for unpack, the side condition∆ ⊢ τ2 ok ensures that the existentially quanti ed
type variable X does not appear free in τ2. This rules out programs such as,

letm =
pack {int, {a = 5, f = λx : int.x+ 1}} as ∃X. {a :X, f :X → X}

in
unpack {X,x} = m in x.f x.a

where the type of (f.x x.a) has X free.

2

