
.

. .
CS 4110 – Programming Languages and Logics
Lecture #25: Type Inference

.

1 Polymorphism in OCaml

In languages lik OCaml, programmers don’t have to annotate their programs with ∀X. τ or e [τ]. Both are
automatically inferred by the compiler, although the programmer can specify types explicitly if desired.

For example, we can write

let double f x = f (f x)

and Ocaml will àgure out that the type is

('a → 'a) → 'a → 'a

which is roughly equivalent to

∀A. (A → A) → A → A

We can also write

double (fun x → x+1) 7

and Ocaml will infer that the polymorphic function double is instantiated on the type int.
The polymorphism in ML is not, however, exactly like the polymorphism in System F. ML restricts

what types a type variablemay be instantiatedwith. Speciàcally, type variables can not be instantiatedwith
polymorphic types. Also, polymorphic types are not allowed to appear on the left-hand side of arrows—i.e.,
a polymorphic type cannot be the type of a function argument. This form of polymorphism is known as
let-polymorphism (due to the special role played by let in ML), or prenex polymorphism. These restrictions
ensure that type inference is decidable.

An example of a term that is typable in System F but not typable inML is the self-application expression
λx. x x. Try typing

fun x → x x

in the top-level loop of Ocaml, and see what happens...

2 Type Inference

In the simply-typed lambda calculus, we explicitly annotate the type of function arguments: λx :τ. e. These
annotations are used in the typing rule for functions.

Γ, x :τ ⊢ e :τ ′

Γ ⊢ λx :τ. e :τ → τ ′

1

Suppose that we didn’t want to provide type annotations for function arguments. We would need to guess
a τ to put into the type context.

Can we still type check our programwithout these type annotations? For the simply typed-lambda cal-
culus (andmany of the extensions we have considered so far), the answer is yes: we can infer (or reconstruct)
the types of a program.

Let’s consider an example to see how this type inference could work.

λa. λb. λc. if a (b+ 1) then b else c

Since the variable b is used in an addition, the type of b must be int. The variable a must be some kind of
function, since it is applied to the expression b+ 1. Since a has a function type, the type of the expression
b + 1 (i.e., int) must be a’s argument type. Moreover, the result of the function application (a (b + 1)) is
used as the test of a conditional, so it had better be the case that the result type of a is also bool. So the type
of a should be int → bool. Both branches of a conditional should return values of the same type, so the
type of c must be the same as the type of b, namely int.

We can write the expression with the reconstructed types:

λa : int → bool. λb : int. λc : int. if a (b+ 1) then b else c

2.1 Constraint-based typing

We now present an algorithm that, given a typing context Γ and an expression e, produces a set of con-
straints—equations between types (including type variables)—that must be satisàed in order for e to be
well-typed in Γ. We introduce type variables, which are just placeholders for types. We let metavariables X
and Y range over type variables. The language we will consider is the lambda calculus with integer con-
stants and addition. We assume that all function deànitions contain a type annotation for the argument,
but this type may simply be a type variable X .

e ::= x | λx :τ. e | e1 e2 | n | e1 + e2

τ ::= int | X | τ1 → τ2

To formally deàne type inference, we introduce a new typing relation:

Γ ⊢ e :τ | C

Intuitively, if Γ ⊢ e : τ | C , then expression e has type τ provided that every constraint in the set C is
satisàed.

We deàne the judgment Γ ⊢ e :τ | C with inference rules and axioms. When read from bottom to top,
these inference rules provide a procedure that, given Γ and e, calculates τ and C such that Γ ⊢ e :τ | C .

CT-V
x :τ ∈ Γ

Γ ⊢ x :τ | ∅
CT-I

Γ ⊢ n : int | ∅

CT-A
Γ ⊢ e1 :τ1 | C1 Γ ⊢ e2 :τ2 | C2

Γ ⊢ e1 + e2 : int | C1 ∪ C2 ∪ {τ1 = int, τ2 = int}

CT-A
Γ, x :τ1 ⊢ e :τ2 | C

Γ ⊢ λx :τ1. e :τ1 → τ2 | C

2

CT-A
Γ ⊢ e1 :τ1 | C1 Γ ⊢ e2 :τ2 | C2 C ′ = C1 ∪ C2 ∪ {τ1 = τ2 → X}

Γ ⊢ e1 e2 :X | C ′ X fresh

Note that we must be careful with the choice of type variables—in particular, the type variable in the rule
CT-A must be chosen appropriately.

2.2 Uniàcation

So what does it mean for a set of constraints to be satisàed? To answer this question, we deàne type sub-
stitutions (or just substitutions, when it’s clear from context). A type substitution is a ànite map from type
variables to types. For example, we write [X 7→ int, Y 7→ int → int] for the substitution that maps
type variable X to int, and type variable Y to int → int. Note that the same variable may occur in both
the domain and range of a substitution. In that case, the intention is that the substitutions are performed
simultaneously. For example the substitution [X 7→ int, Y 7→ (int → X)] maps Y to int → X .

More formally, we deàne substitution of type variables as follows.

σ(X) =

{
τ if X 7→ τ ∈ σ

X if X not in the domain of σ

σ(int) = int

σ(τ → τ ′) = σ(τ) → σ(τ ′)

Note that we don’t need to worry about avoiding variable capture, since there are no constructs in the
language that bind type variables. If we had polymorphic types ∀X. τ from the polymorphic lambda
calculus, we would need to be concerned with this.

Given two substitutions σ and σ′, we write σ ◦ σ′ for their composition: (σ ◦ σ′)(τ) = σ(σ′(τ)).

2.2.1 Uniàcation

Constraints are of the form τ = τ ′. We say that a substitution σ uniàes constraint τ = τ ′ if σ(τ) = σ(τ ′).
We say that substitution σ satisàes (or uniàes) set of constraints C if σ uniàes every constraint in C .

For example, the substitution σ = [X 7→ int, Y 7→ (int → int)] uniàes the constraint

X → (X → int) = int → Y

since
σ(X → (X → int)) = int → (int → int) = σ(int → Y)

So to solve a set of constraints C , we need to ànd a substitution that uniàes C . More speciàcally, suppose
that Γ ⊢ e : τ | C ; a solution for (Γ, e, τ, C) is a pair σ, τ ′) such that σ satisàes C and σ(τ) = τ ′. If there
are no substitutions that satisfy C , then we know that e is not typeable.

2.2.2 Uniàcation algorithm

To calculate solutions to constraint sets, we use the idea, due to Hindley and Milner, of using uniàcation to
check that the set of solutions is non-empty, and to ànd a “best” solution (from which all other solutions

3

can be easily generated). The uniàcation algorithm is deàned as follows:

unify(∅) = [] (the empty substitution)

unify({τ = τ ′} ∪ C ′) = if τ = τ ′ then

unify(C ′)

else if τ = X and X not a free variable of τ ′ then

unify(C ′{τ ′/X}) ◦ [X 7→ τ ′]

else if τ ′ = X and X not a free variable of τ then

unify(C ′{τ/X}) ◦ [X 7→ τ]

else if τ = τo → τ1 and τ ′ = τ ′o → τ ′1 then

unify(C ′ ∪ {τ0 = τ ′0, τ1 = τ ′1})
else

fail

The check thatX is not a free variable of the other type ensures that the algorithm doesn’t produce a cyclic
substitution (e.g., X 7→ (X → X)), which doesn’t make sense with the ànite types we currently have.

The uniàcation algorithm always terminates. (How would you go about proving this?) Moreover, it
produces a solution if and only if a solution exists. The solution found is the most general solution, in the
sense that if σ = unify(C) and σ′ is a solution to C , then there is some σ′′ such that σ′ = (σ′′ ◦ σ).

4

