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CS 4110 – Programming Languages and Logics
Lectures #20: Normalization
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1 Introduction

A major limitation of the simply-typed lambda-calculus is that we can no longer write recursive functions.
Consider the nonterminating expression Ω = (λx. x x) (λx. x x). What type does it have? Let’s suppose
that the type of λx. x x is τ → τ ′. But λx. x x is applied to itself! So that means that the type of λx. x x
is the argument type τ . So we have that τ must be equal to τ → τ ′. There is no such type for which this
equality holds. (At least, not in this type system...)

This means that every well-typed program in the simply-typed lambda calculus terminates. Formally:

Theorem (Normalization). If ⊢ e :τ then there exists a value v such that e →∗ v.

The rest of this lecture is devoted to proving this theorem.

2 Notation

We work with the simply-typed lambda calculus over unit,

e ::= x | () | λx : τ. e | e1 e2
v ::= () | λx : τ. e
τ ::= unit | τ1 → τ2

with the standard call-by value semantics:

E ::= [·] | E e | v E

C
e → e′

E[e] → E[e′]

β-
(λx. e) v → e{v/x}

3 A First Attempt

As a àrst attempt toward proving normalization, let us try a proof by structural induction on e. Wewill need
the following lemmas, all of which are standard. Each of these lemmas can be proved by straightforward
induction on the typing derivation. We leave these proofs as an exercise.
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Lemma (Inversion).

• If Γ ⊢ x :τ then Γ(x) = τ

• If Γ ⊢ λx : τ1. e :τ then τ = τ1 → τ2 and Γ, x : τ1 ⊢ e :τ2.

• If Γ ⊢ e1 e2 :τ then Γ ⊢ e1 :τ
′ → τ and Γ ⊢ e2tyτ

′.

Lemma (Canonical Forms).

• If Γ ⊢ v :unit then v = ()

• If Γ ⊢ v :τ1 → τ2 then v = λx :τ1.e and Γ, x :τ1 ⊢ e :τ2.

Now let us attempt to prove prove the main theorem.

Theorem (Normalization). If ⊢ e :τ then there exists a value v such that e →∗ v.

Proof. By structural induction on e.

Case e = x:
By inversion, we have that the empty typing context maps x to τ , which is a contradiction. Hence,
the case vacuously holds.

Case e = ():
Immediate since e is already a value.

Case e = λx : τ.e:
Immediate since e is already a value.

Case e = e1 e2:
By inversion we have ⊢ e1 : τ

′ → τ and ⊢ e2 : τ
′. Hence, by induction hypothesis there exist v1 and

v2 such that that e1 →∗ v1 and e2 →∗ v2. Moreover, by canonical formswe have that v1 = λx : τ ′.e′.
Hence, v1 v2 → e′{v2/x}.
At this pointwewould like to apply the induction hypothesis to e′{v2/x} to show that it also evaluates
to a value, but doing this would not be valid—the induction hypothesis only applies to immediate
subexpressions of e! Moreover, we cannot get around this by using the other induction principles we
have seen before, such as induction on the size of the expression or on the typing derivation—these
induction hypotheses do not apply to e′{v2/x} either!

We need a different proof technique.

4 Logical Relations

Oneway to prove normalization for the simply-typed lambda calculus, whichwas invented by Tait in 1967,
is to use a logical relation. The idea in a logical relation is to deàne a predicate on expressions indexed on types
that captures the property we want. At base types this set will simply contain all expressions satisfying the
property. At function types, we additionally require that the property be preserved whenever we apply the
function to an argument of appropriate type that also has the property.

Formally, we deàne the following predicate Rτ (e) inductively on τ . We use e halts as an abbreviation
for exists v such that e →∗ v.
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Deànition (Logical Relation).

• Runit(e) iff ⊢ e :unit and e halts.

• Rτ1→τ2(e) iff ⊢ e :τ1 → τ2 and e halts, and for every e′ such that Rτ1(e
′) we have Rτ2(e e

′).

Normalization then follows from the following two lemmas:

Lemma. If ⊢ e :τ thenRτ (e)

Lemma. IfRτ (e) then e halts.

The proof of the second is trivial, since halting is built into the deànition of the logical relation. To prove
the àrst, we need the following addition lemma:

Lemma. If ⊢ e :τ and e → e′ thenRτ (e) iffRτ (e
′).

We leave the proof of this lemma as an exercise.
Finally, the lemma above is proved as follows. We strengthen the induction hypothesis to allow a non-

empty typing context.

Lemma. If x1 :τ1 . . . xk :τk ⊢ e :τ , and v1 to vk are values such that ⊢ v1 :τ1 to ⊢ vk :τk andRτ1(v1) toRτk(vk),
thenRτ (e{v1/x1} . . . {vk/xk}).

Proof. By structural induction on e.

• Case e = x:
By inversion we have that x = xi and τ = τi. By deànition, e{v1/x1} . . . {vk/xk} = vi. We have
Rτi(vi) by assumption.

• Case e = ():
By inversion we have that τ = unit. By deànition, e{v1/x1} . . . {vk/xk} = (). We obtain Runit(())
by the deànition of the logical relation as ⊢ () :unit and () halts.

• Case e = λx :τ ′. e′:
By inversion we have τ = τ ′ → τ ′′ and x1 : τ1 . . . xk : τk ⊢ e′ : τ ′′. We immediately have that
(λx : τ ′. e′){v1/x1} . . . {vk/xk} halts since it is already a value. Let e′′ be an arbitrary expression
such thatRτ ′(e

′′). By deànition of the logical relation we have ⊢ e′′ :τ ′ and e′′ halts. So there exists a
v′′ such that e′′ →∗ v′′. By the previous lemmawehave thatRτ ′(v

′′). By the induction hypothesis, we
haveRτ ′′(e

′{v1/x1} . . . {vk/xk}{v′′/x}). Hence, by the deànition of the operational semantics and
the previous lemma again we also haveRτ ′′(e{v1/x1} . . . {vk/xk}) e′′). Therefore by the deànition
of the logical relation we have Rτ ′→τ ′′(e{v1/x1} . . . {vk/xk}) as required.

• Case e = e1 e2: Left as an exercise.
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