
.

. .
CS 4110 – Programming Languages and Logics
Lecture #15: Programming in λ-calculus

.

This lecture will build further intuitions for the λ-calculus by exploring encodings using S andK com-
binators, as well as encodings of common datatypes such as booleans and integers.

1 Combinators

In the last lecture, we saw the DeBruijn representation of λ-calculus expressions. Another way to avoid the
issues having to dowith free and bound variable names in the λ-calculus is toworkwith closed expressions
or combinators. It turns out that just using two combinators, S, K, and application, we can encode the entire
λ-calculus.

Here are the evaluation rules for S, K, as well as a third combinator I, which will also be useful:

K x y → x
S x y z → x z (y z)
I x → x

Equivalently, here are their deànitions as closed λ-expressions:

K = λx.λy. x
S = λx.λy.λz. x z (y z)
I = λx. x

It is not hard to see that I is not needed—it can be encoded as S K K.
To show how these combinators can be used to encode the λ-calculus, we have to deàne a translation

that takes an arbitrary closed λ-calculus expression and turns it into a combinator term that behaves the
same during evaluation. This translation is called bracket abstraction. It proceeds in two steps. First, we
deàne a function [x] that takes a combinator termM possibly containing free variables and builds another
term that behaves like λx.M , in the sense that ([x]M)N → M{N/x} for every termN :

[x] x = I
[x]N = KN where x ̸∈ fv(N)

[x]N1 N2 = S ([x]N1) ([x]N2)

Second, we deàne a function (e)∗ that maps a λ-calculus expression to a combinator term:

(x)∗ = x
(e1 e2)∗ = (e1)∗ (e2)∗
(λx.e)∗ = [x] (e)∗

1

As an example, the expression λx.λy. x is translated as follows:

(λx.λy. x)∗
= [x] (λy. x)∗
= [x] ([y] x)
= [x] (K x)
= (S ([x] K) ([x] x))
= S (K K) I

We can check that this behaves the same as our original λ-expression by seeing how it evaluates when
applied to arbitrary expressions e1 and e2.

(λx.λy. x) e1 e2
= (λy. e1) e2
= e1

and
(S (K K) I) e1 e2

= (K K e1) (I e1) e2
= K e1 e2
= e1

2 λ-calculus encodings

The pure λ-calculus contains only functions as values. It is not exactly easy to write large or interesting
programs in the pure λ-calculus. We can however encode objects, such as booleans, and integers.

2.1 Booleans

Let us start by encoding constants and operators for booleans. That is, we want to deàne functions TRUE,
FALSE, AND, NOT, IF, and other operators that behave as expected. For example:

AND TRUE FALSE = FALSE

NOT FALSE = TRUE

IF TRUE e1 e2 = e1

IF FALSE e1 e2 = e2

Let’s start by deàning TRUE and FALSE:

TRUE , λx. λy. x

FALSE , λx. λy. y

Thus, both TRUE and FALSE are functions that take two arguments; TRUE returns the àrst, and FALSE
returns the second. We want the function IF to behave like

λb. λt. λf. if b = TRUE then t else f.

2

The deànitions for TRUE and FALSEmake this very easy.

IF , λb. λt. λf. b t f

Deànitions of other operators are also straightforward.

NOT , λb. b FALSE TRUE

AND , λb1. λb2. b1 b2 FALSE

OR , λb1. λb2. b1 TRUE b2

2.2 Church numerals

Church numerals encode a number n as a function that takes f and x, and applies f to x n times.

0 , λf. λx. x

1 = λf. λx. f x

2 = λf. λx. f (f x)

SUCC , λn. λf. λx. f (n f x)

In the deànition for SUCC, the expression n f x applies f to x n times (assuming that variable n is the
Church encoding of the natural number n). We then apply f to the result, meaning that we apply f to x
n+ 1 times.

Given the deànition of SUCC, we can easily deàne addition. Intuitively, the natural number n1+n2 is
the result of apply the successor function n1 times to n2.

PLUS , λn1. λn2. n1 SUCC n2

3

