
.

. .
CS 4110 – Programming Languages and Logics
Lecture #11: Hoare Logic

.  

1 Hoare Logic

How do we show that a partial correctness statement {P} c {Q} holds? We know that {P} c {Q} is
valid if it holds for all stores and interpretations: ∀σ, I. σ �I {P} c {Q}. Furthermore, showing that
σ �I {P} c {Q} requires reasoning about the execution of command c (that is, C[[c]]), as indicated by the
deànition of validity.

It turns out that there is an elegant way of deriving valid partial correctness statements, without having
to reason about stores, interpretations, and the execution of c. We can use a set of inference rules and
axioms, called Hoare rules, to directly derive valid partial correctness statements. The set of rules forms a
proof system known as Hoare logic.

S
{P} skip {P}

A
{P [a/x]} x := a {P}

S
{P} c1 {R} {R} c2 {Q}

{P} c1; c2 {Q}
I

{P ∧ b} c1 {Q} {P ∧ ¬b} c2 {Q}
{P} if b then c1 else c2 {Q}

W
{P ∧ b} c {P}

{P} while b do c {P ∧ ¬b}

The assertion P in the rule for while loops is essentially a loop invariant; it is an assertion that holds before
and after each iteration, as shown in the premise of the rule. Therefore, it is both a pre-condition for the
loop (because it holds before the àrst iteration); and also a post-condition for the loop (because it holds
after the last iteration). The fact that P is both a pre- and post-condition for the while loop is reáected in
the conclusion of the rule.

There is one more rule, the rule of consequence, which allows to strengthen pre-conditions and weaken
post-conditions:

C
� (P ⇒ P ′) {P ′} c {Q′} � (Q′ ⇒ Q)

{P} c {Q}

These set of Hoare rules represent an inductive deànition for a set of partial correctness statements
{P} c {Q}. We will say that {P} c {Q} is a theorem in Hoare logic, written ⊢ {P} c {Q}, if we can build
a ànite proof tree for it.

1



2 Soundness and Completeness

At this point we have two kinds of partial correctness assertions:

• valid partial correctness statements � {P} c {Q}, which hold for all stores and interpretations, ac-
cording to the semantics of c, and

• Hoare logic theorems ⊢ {P} c {Q}, that is, partial correctness statements that can be derived using
the axioms and rules of Hoare logic.

The question is howdo these sets relate to each other? More precisely, we have to answer two questions.
First, is each Hoare logic theorem guaranteed to be valid partial correctness triple? In other words,

does ⊢ {P} c {Q} imply � {P} c {Q}?

The answer is yes, and it shows that Hoare logic is sound. Soundness is important because it says that
Hoare logic doesn’t allow us to derive partial correctness assertions that actually don’t hold. The proof of
soundness requires induction on the derivations in ⊢ {P} c {Q} (we omit this proof).

The second question refers to the expressiveness and power of Hoare rules: can we always build a
Hoare logic proof for each valid assertion? In other words,

does � {P} c {Q} imply ⊢ {P} c {Q}?

The answer is a qualiàed yes: if � {P} c {Q} then there is a proof of {P} c {Q} using the rules of Hoare
logic, provided there are proofs for the validity of assertions that occur in the rule of consequence � (P ⇒
P ′) and � (Q′ ⇒ Q). This result is known as the relative completeness of Hoare logic and is due to Cook (1974).

3 Example: Factorial

As an example illustrating how we can use Hoare logic to verify the correctness of a program, consider a
program that computes the factorial of a number n:

{x = n ∧ n > 0}
y := 1;
while x > 0 do {

y := y ∗ x;
x := x− 1

}
{y = n!}

Because the derivation for this proof is somewhat large, we will go through the reasoning used to construct
it step by step.

At the top level, the program is a sequence of an assignment and a loop. To use the S rule, we need to
ànd an assertion that holds after the assignment and before the loop. Examining the rule for while loops,
we see that the assertion before the loop must be an invariant for the loop. Inspecting the loop we see that
it builds the factorial up in y starting with n, then multiplying it by n− 1, then n− 2, etc. At each iteration,
x contains the next value multiplied into y, that is:

y = n ∗ (n− 1) ∗ ... ∗ (x+ 1)

2



If we multiply both sides of this equality by x! and re-write the equality we get x! ∗ y = n!, which is an
invariant for the loop. However, to make the proof go through, we need a slightly stronger invariant:

I = x! ∗ y = n! ∧ x ≥ 0

Having identiàed a suitable loop invariant, let us take a step back and review where we are. We want
to prove that our overall partial correctness speciàcation is valid. To do this, we need to show two facts:

{x = n ∧ n > 0} y := 1 {I} (1)

{I} while x > 0 do {y := y ∗ x; x := x− 1} {y = n!} (2)

After showing that both (1) and (2) hold, we can use the rule S to obtain the desired result.
To show (1), we use the A axiom and obtain the following: {I[1/y]} y := 1 {I}. Expanding this

out, we obtain:
{x! ∗ 1 = n! ∧ x ≥ 0} y := 1 {x! ∗ y = n! ∧ x ≥ 0}

With the following implication,

x = n ∧ n > 0 =⇒ x! ∗ 1 = n! ∧ x ≥ 0,

(which can be shown by an easy calculation) we obtain (1) using the rule C.
Now let us prove (2). To use the W rule, we need to show that I is an invariant for the loop:

{I ∧ x > 0} y := y ∗ x; x := x− 1 {I} (3)

We will show this by going backwards through the sequence of assignments:

{(x− 1)! ∗ y = n! ∧ (x− 1) ≥ 0} x := x− 1 {I} (4)

{(x− 1)! ∗ y ∗ x = n! ∧ (x− 1) ≥ 0} y := y ∗ x {(x− 1)! ∗ y = n! ∧ (x− 1) ≥ 0} (5)

Then, using the following implication:

I ∧ x > 0 =⇒ (x− 1)! ∗ y ∗ x = n! ∧ (x− 1) ≥ 0

we obtain (3) using C, (4), and (5). Thus, I is an invariant for the loop and so by W we
obtain,

{I} while x > 0 do {y := y ∗ x; x := x− 1} {I ∧ x ≤ 0}

To ànish the proof, we just have to show

I ∧ x ≤ 0 =⇒ y = n!
i.e., x! ∗ y = n! ∧ x ≥ 0 ∧ x ≤ 0 =⇒ y = n!

which holds as x ≥ 0 and x ≤ 0 implies x = 0 and so x! = 1. The result follows by C.

3


