CS 4110 - Programming Languages and Logics

Lecture #4: Large-step semantics

1 Large-step operational semantics

In the last lecture we defined a semantics for our language of arithmetic expressions using a small-step
evaluation relation —C Config x Config (and its reflexive and transitive closure — *). In this lecture
we will explore an alternative approach—Iarge-step operational semantics—which yields the final result of
evaluating an expression directly.

Defining a large-step semantics boils down to specifying a relation |} that captures the evaluation of an
expression. The || relation has the following type:

|C (Store x Exp) x (Store x Int).

We write (0, ¢) || (¢/,n) to indicate that ((o, €), (¢/,n)) €. In other words, the expression e with store o
evaluates in one big step to the final store o’ and integer n.
We define the relation |} inductively, using inference rules:
n=o(x)

INT ——F Var

(0,n) I (o,n) (0,2) I (o,n)

<U, €1> »U <0'/,77,1> <O”, 62) »U <0’”, n2> n=mni -+ n9

(o,e1+e2) I (0", m)

ADD

(g,e1) I (0',m1) (o' ea) U (0" m2) n=ny xny

MuL
(o,e1%e9) || (0" n)

(o,e1) I (0',m1) (0'[x = ma],e2) | (0", na)

ASsSGN
(0,2 :=e1; e2) || (0", n2)

Toillustrate the use of these rules, consider the following proof tree, which shows that evaluating (o, foo :=3; foo * bar)
using a store o such that o (bar) = 7 yields 0’ = o[foo — 3] and 21 as a result:

. (o', foo) || (o', 3) Vax (o, bar) || (o', 7) Var Mot

(0,3) | (0,3) (o', foo * bar) || (o’,21)
(0, foo :=3; foo * bar) | (o/,21)

AsSGN

A closer look to this structure reveals the relation between small step and large-step evaluation: a depth-first
traversal of the large-step proof tree yields the sequence of one-step transitions in small-step evaluation.

2 Equivalence of semantics

A natural question to ask is whether the small-step and large-step semantics are equivalent. The next
theorem answers this question affirmatively.

Theorem (Equivalence of semantics). For all expressions e, stores o and o', and integers n we have:
(0.¢) U (o', n) ifand only if (0, €) —*(0",)
To streamline the proof, we will work with the following definition of the multi-step relation:

—F—— REFL
(0,€) =%(o,€)

(o,e) — (o',) (o' ey —=*(a" "

TrANS
(o,e) =*(a",€")

Proof sketch. We show each direction separately.

=>: We want to prove that the following property P holds for all expressions e € Exp:
P(e) £ Vo,0’ € Store. Vn € Int. (0,¢) |} (¢/,n) = (0,e) =*(c’,n)

We proceed by structural induction on e. We have to consider each of the possible axioms and infer-
ence rules for constructing an expression.

Case ¢ = x: Assume that (0, z) || (0/,n). That is, there is some derivation in the large-step opera-
tional semantics whose conclusion is (o, z) |} (o, n). There is only one rule whose conclusion
matches the configuration (o, x): the large-step rule Var. Thus, we have n = o(x) and ¢’ = 0.
By the small-step rule VAR, we also have (0,z) — (o, n). By the RerL and TRANS rules, we
conclude that (o, z) — *(o, n), which finishes the case.

Case ¢ = n: Assume that (o,n) || (¢0/,n’). There is only one rule whose conclusion matches (o, n):
the large-step rule INT. Thus, we have n’ = n and ¢/ = ¢ and so (o, n) — *(o, n) by the RerL
rule.

Case ¢ = e1 +e9: This is an inductive case. We want to prove that if P(e;) and P(e2) hold, then
P(e) also holds. Let’s write out P(ey), P(e2), and P(e) explicitly.

P(e1) = Vn,o,0'.{(0,e1) | (0/,n) = (0,€e1) = *(o’,n)

-
P(es) = Vn,o,0".(0,e2) || (0/,n) = (0,e2) = *(c’,n)
P(e) = Vn,o,0'. {(0,e1+e3) | (0/,n) = (0,e1+e3) —*(c’,n)

g
o

Assume that P(e1) and P(e2) hold. Also assume that there exist o, ' and n such that (7, €1 + e2) |}
(o', n). We need to show that (o, e1 +e3) —*(c’, n).
We assumed that (o, e1 + e3) |} {0/, n). This means that there is some derivation whose conclu-
sion is (0, e1 +ea) || (0/,n). By inspection, we see that only one rule has a conclusion of this
form: the App rule. Thus, the last rule used in the derivation was App and it must be the case
that (0, e1) | (6”,n1) and (0", e2) | (¢/,n2) hold for some n; and ng with n = ny + na.
By the induction hypothesis P(e1), as (o, e1) |} (¢”,n1), we must have (o, e1) — *(c”,n1).
Likewise, by induction hypothesis P(e2), we have (o”,e3) — *(0’,n2). By Lemma 1 below,
we have,

<(7, el +€2> —>*<0’”, nq +€2>,

and by another application of Lemma 1 we have:
(0" 1 +e3) —=*(0’,ny+n2)
Then, using the small-step ApD rule and the multi-step TRANS rule, we have:

n=mni+n

ADD REFL
<Ua n1+n2> — <OJ,TL> <0'/,77,> —>*<UI,7”L>

(o' n1 +ng) —*(co’,n)

TrRANS

Finally, by two applications of Lemma 2, we obtain (o, e + e2) — *(0”, n), which finishes the
case.

Case e = e * e9. Similar to case for e1 + e above.

Case ¢ = x := e1; e2. Omitted. Try it as an exercise.

<=: We proceed by induction on the derivation of (7, e) — *(c’, n) with a case analysis on the last rule
used.

Case Refl: Then e = nand o’ = 0. We immediately have (o, n) |} (o, n) by the large-step rule INT.
Case Trans: Then (o,¢e) — (¢”,€”) and (0", €"”) — *(c’,n). In this case, the induction hypothesis
gives (0”,€") |} (o/,n). The result follows from Lemma 3 below.

O

Lemma 1. If (o, e) — *(d’,n), then the following hold:

(o', n+ey)

(o',n*eq)
(o’,n1+n)
(0',nq*n)

(o,e+e3) —
(o,exeg) —
(o,n1 +e) —

) —

*
*
*
(o,m1 *xe) —*

[]
[]
[]
[]
Proof. Omitted; try it as an exercise. O
Lemma 2. If (o,e) — (o’ €') and (o/,€e') —*(a”,€"), then (o, e) —*(c”,€").
Proof. Omitted; try it as an exercise. O
Lemma 3. If (o,¢) — (" €") and (" ,€") || (¢, n), then (c,¢) || (¢, n).

Proof. Omitted; try it as an exercise. O

