
.

. .
CS 4110 – Programming Languages and Logics
Lecture #2: Introduction to Semantics

.

What is the meaning of a program? When we write a program, we represent it using sequences of char-
acters. But these characters are just syntax—they do not tell us what the program means. We might be
tempted to deàne meaning by executing the program (either using an interpreter or by compiling it àrst).
But interpreters and compilers often have bugs! We could look in a speciàcation manual. But manuals
typically only offer an informal description of the constructs in a language.

A better way to deàne meaning is to develop a formal, mathematical deànition of the semantics of the
language. This approach has several advantages: it is unambiguous, concise, and—most importantly—it
makes it possible to develop mathematical proofs about properties of interest. The main drawback is that
the semantics itself can be quite complicated, especially if one attempts to model all of the features of a
full-blown modern programming language.

There are three pedigreed ways of specifying the meaning, or semantics, of a programming language.

• Operational semantics deànes meaning in terms of execution on an abstract machine.
• Denotational semantics deànes meaning in terms of mathematical objects such as functions.
• Axiomatic semantics deànes meaning in terms of logical formulas satisàed before and after execution.

Each of these approaches has advantages and disadvantages in terms of howmathematically sophisticated
they are, how easy they are to use in proofs, and how easy it is to use them to implement an interpreter or
compiler. We will discuss these tradeoffs in depth later in this course.

1 Arithmetic Expressions

To understand some of the key concepts of semantics, let us start with a very simple language of integer
arithmetic expressions, with assignment. A program in this language is an expression; executing a program
means evaluating the expression to an integer. To describe the structure of this language we will use the
following domains:

x, y, z ∈ Var
n,m ∈ Int

e ∈ Exp

Var is the set of program variables (e.g., foo, bar , baz , i , etc.). Int is the set of constant integers (e.g., 42,
40, 7). Exp is the domain of expressions, which we specify using a BNF (Backus-Naur Form) grammar:

e ::= x | n | e1 + e2 | e1 * e2 | x := e1 ; e2

Informally, the expression x := e1 ; e2 means that x is assigned the value of e1 before evaluating e2. The
result of the entire expression is the value described by e2.

This grammar speciàes the syntax for the language. An immediate problem here is that the grammar
is ambiguous. Consider the expression 1 + 2 * 3. One can build two abstract syntax trees:

1

..+

.1 .*

.2 .3

.*

.+

.1 .2

.3

There are several ways to deal with this problem. One is to rewrite the grammar for the same language
to make it unambiguous. But that makes the grammar more complex and harder to understand. Another
possibility is to extend the syntax to require parentheses around all addition andmultiplication expressions:

e ::= x | n | (e1 + e2) | (e1 * e2) | x := e1 ; e2

However, this also leads to unnecessary clutter and complexity. Instead, we separate the “concrete syntax”
of the language (which speciàes how to unambiguously parse a string into program phrases) from its “ab-
stract syntax” (which describes, possibly ambiguously, the structure of program phrases). In this course we
will use the abstract syntax and assume that the abstract syntax tree is known. When writing expressions,
wewill occasionally use parenthesis to indicate the structure of the abstract syntax tree, but the parentheses
are not part of the language itself. (For details on parsing, grammars, and ambiguity elimination, see or
take CS 3810 or CS 4120.)

1.1 Representing Expressions

The syntactic structure of expressions in this language can be compactly expressed inOCamlusingdatatypes:

type exp = Var of string
| Int of int
| Add of exp * exp
| Mul of exp * exp
| Assgn of string * exp * exp

This closely matches the BNF grammar above. The abstract syntax tree (AST) of an expression can be ob-
tained by applying the datatype constructors in each case. For instance, the AST of expression 2 * (foo + 1)
is:

Mul(Int(2), Add(Var("foo"), Int(1)))

In OCaml, parentheses can be dropped when there is one single argument, so the above expression can be
written as:

Mul(Int 2, Add(Var "foo", Int 1))

We could express the same structure in a language like Java using a class hierarchy, although it would be a
little more complicated:

abstract class Expr { }
class Var extends Expr { String name; .. }
class Int extends Expr { int val; ... }
class Add extends Expr { Expr exp1, exp2; ... }
class Mul extends Expr { Expr exp1, exp2; ... }
class Assgn extends Expr { String var, Expr exp1, exp2; .. }

2

2 Operational semantics

We have an intuitive notion of what expressions mean. For example, the 7 + (4 * 2) evaluates to 15, and
i := 6 + 1 ; 2 * 3 * i evaluates to 42. In this section, we will formalize this intuition precisely.

An operational semantics describes how a program executes on an abstract machine. A small-step opera-
tional semantics describes how such an execution proceeds in terms of successive reductions—here, of an
expression—until we reach a value that represents the result of the computation. The state of the abstract
machine is often referred to as a conàguration. For our language a conàguration must include two pieces of
information:

• a store (also known as environment or state), whichmaps integer values to variables. During program
execution, wewill refer to the store to determine the values associatedwith variables, and also update
the store to reflect assignment of new values to variables,

• the expression to evaluate.

We will represent stores as partial functions from Var to Int and conàgurations as pairs of expressions
and stores:

Store , Var ⇀ Int

Config , Store×Exp

Wewill denote conàgurations using angle brackets. For instance, ⟨σ, (foo + 2) * (bar + 2)⟩ is a conàguration
where σ is a store and (foo + 2) * (bar + 2) is an expression that uses two variables, foo and bar . The small-
step operational semantics for our language is a relation →⊆ Config × Config that describes how one
conàguration transitions to a new conàguration. That is, the relation→ shows us how to evaluate programs
one step at a time. We use inàx notation for the relation →. That is, given any two conàgurations ⟨σ1, e1⟩
and ⟨σ2, e2⟩, if (⟨e1, σ1⟩, ⟨e2, σ2⟩) is in the relation→, then we write ⟨σ1, e1⟩ → ⟨σ2, e2⟩. For example, we
have ⟨σ, (4 + 2) * y⟩ → ⟨σ, 6 * y⟩. That is, we can evaluate the conàguration ⟨σ, (4 + 2) * y⟩ one step to get
the conàguration ⟨σ, 6 * y⟩.

Using this approach, deàning the semantics of the language boils down to to deàning the relation
→ that describes the transitions between conàgurations. One issue here is that the domain of integers
is inànite, as is the domain of expressions. Therefore, there is an inànite number of possible machine
conàgurations, and an inànite number of possible single-step transitions. Weneed aàniteway of describing
an inànite set of possible transitions. We can compactly describe → using inference rules:

n = σ(x)

⟨σ, x ⟩ → ⟨σ, n⟩
V

⟨σ, e1⟩ → ⟨σ′, e′1⟩
⟨σ, e1 + e2⟩ → ⟨σ′, e′1 + e2⟩

LA
⟨σ, e2⟩ → ⟨σ′, e′2⟩

⟨σ, n + e2⟩ → ⟨σ′, n + e′2⟩
RA

p = m+ n

⟨σ, n +m⟩ → ⟨σ, p⟩
A

⟨σ, e1⟩ → ⟨σ′, e′1⟩
⟨σ, e1 * e2⟩ → ⟨σ′, e′1 * e2⟩

LM
⟨σ, e2⟩ → ⟨σ′, e′2⟩

⟨σ, n * e2⟩ → ⟨σ′, n * e′2⟩
RM

p = m× n

⟨σ,m *n⟩ → ⟨σ, p⟩
M

⟨σ, e1⟩ → ⟨σ′, e′1⟩
⟨σ, x := e1 ; e2⟩ → ⟨σ′, x := e′1 ; e2⟩

A
σ′ = σ[x 7→ n]

⟨σ, x :=n ; e2⟩ → ⟨σ′, e2⟩
A

3

The meaning of an inference rule is that if the facts above the line holds, then the fact below the line
holds. The fact above the line are called premises; the fact below the line is called the conclusion. The rules
without premises are axioms; and the rules with premises are inductive rules. We use the notation σ[x 7→ n]
for the store that maps the variable x to integer n, and maps every other variable to whatever σ maps it to.
More explicitly, if f is the function σ[x 7→ n], then we have

f(y) =

{
n if y = x
σ(y) otherwise

3 Using the Semantics

Now let’s see howwe can use these rules. Suppose we want to evaluate the expression (foo + 2) * (bar + 1)
with a store σ where σ(foo) = 4 and σ(bar) = 3. That is, we want to ànd the transition for the con-
àguration ⟨σ, (foo + 2) * (bar + 1)⟩. For this, we look for a rule with this form of a conàguration in the
conclusion. By inspecting the rules, we ànd that the only rule that matches the form of our conàguration
is LM, where e1 = foo + 2 and e2 = bar + 1 but e′1 is not yet known. We can instantiate LM, replacing
the metavariables e1 and e2 with appropriate expressions.

⟨σ, foo + 2⟩ → ⟨e′1, σ⟩
⟨σ, (foo + 2) * (bar + 1)⟩ → ⟨σ, e′1 * (bar + 1)⟩

LM

Now we need to show that the premise actually holds and ànd out what e′1 is. We look for a rule whose
conclusion matches ⟨σ, foo + 2⟩ → ⟨e′1, σ⟩. We ànd that LA is the only matching rule:

⟨σ, foo⟩ → ⟨σ, e′′1⟩
⟨σ, foo + 2⟩ → ⟨σ, e′′1 + 2⟩

LA

We repeat this reasoning for ⟨σ, foo⟩ → ⟨σ, e′′1⟩ and ànd that the only applicable rule is the axiom V:

σ(foo) = 4

⟨σ, foo⟩ → ⟨σ, 4⟩
V

Since this is an axiom and has no premises, there is nothing left to prove. Hence, e′′1 = 4 and e′1 = 4 + 2.
We can put together the above pieces and build the following proof:

σ(foo) = 4

⟨σ, foo⟩ → ⟨σ, 4⟩
V

⟨σ, foo + 2⟩ → ⟨σ, 4 + 2⟩
LA

⟨σ, (foo + 2) * (bar + 1)⟩ → ⟨σ, (4 + 2) * (bar + 1)⟩
LM

This proves that, given our inference rules, the one-step transition

⟨σ, (foo + 2) * (bar + 1)⟩ → ⟨σ, (4 + 2) * (bar + 1)⟩

is derivable. The structure above is called a “proof tree” or “derivation”. It is important to keep in mind
that proof trees must be ànite for the conclusion to be valid.

4

We can use a similar reasoning to ànd out the next evaluation step:

6 = 4 + 2

⟨σ, 4 + 2⟩ → ⟨σ, 6⟩
A

⟨σ, (4 + 2) * (bar + 1)⟩ → ⟨σ, 6 * (bar + 1)⟩
LM

And we can continue this process. At the end, we can put together all of these transitions, to get a view of
the entire computation:

⟨σ, (foo + 2) * (bar + 1)⟩ → ⟨σ, (4 + 2) * (bar + 1)⟩
→ ⟨σ, 6 * (bar + 1)⟩
→ ⟨σ, 6 * (3 + 1)⟩
→ ⟨σ, 6 * 4⟩
→ ⟨σ, 24⟩

The result of the computation is a number, 24. The machine conàguration that contains the ànal result is
the point where the evaluation stops; they are called ànal conàgurations. For our language of expressions,
the ànal conàgurations are of the form ⟨σ, n⟩.

We write →∗ for the reflexive transitive closure of the relation →. That is, if ⟨σ, e⟩ → ∗⟨σ′, e′⟩ using
zero or more steps, we can evaluate the conàguration ⟨σ, e⟩ to ⟨σ′, e′⟩. Thus, we have:

⟨σ, (foo + 2) * (bar + 1)⟩ →∗⟨σ, 24⟩

5

