
.

. .
CS 4110 – Programming Languages and Logics
Lecture #24: Featherweight Java Properties

.

Based on material by Stephen Chong, Greg Morrisett, Andrew Myers, George Necula, and Radu Rugina

In this lecture, we will develop a proof of type soundness for Featherweight Java in the usual way,
as a corollary of progress and preservation. The details of these proofs will be a little different than
the ones we have seen before, however, due to the presence of subtyping and casts.

1 Preservation

The proof of preservation relies on several supporting lemmas.

Lemma (Method Typing). If mtype(m,C) = D → D and mbody(m,C) = (x, e) then there exists types
C ′ and D′ such that x : D, this : C ′ ⊢ e : D′ and D′ ≤ D.

Lemma (Substitution). If Γ, x : B ⊢ e : C and Γ ⊢ u : B′ with B′ ≤ B then there exists C ′ such that
Γ ⊢ [x 7→ u]e : C ′ and C ′ ≤ C.

Lemma (Weakening). If Γ ⊢ e : C then Γ, x : B ⊢ e : C.

Lemma (Decomposition). If Γ ⊢ E[e] : C then there exists a type B such that Γ ⊢ e : B

Lemma (Context). If Γ ⊢ E[e] : C and Γ ⊢ e : B and Γ ⊢ e′ : B′ with B′ ≤ B then there exists a type
C ′ such that Γ ⊢ E[e′] : C ′ and C ′ ≤ C.

Lemma (Preservation). If Γ ⊢ e : C and e → e′ then there exists a type C ′ such that Γ ⊢ e′ : C ′ and
C ′ ≤ C.

Proof. By induction on e → e′, with a case analysis of the last rule used in the derivation.

Case E-CONTEXT: e = E[e1] and e1 → e′1 and e′ = E[e′1]

By the decomposition lemma we have that there exists a type B such that Γ ⊢ e1 : B. By the
induction hypothesis applied to e1 we have that there exists a type B′ such that Γ ⊢ e′1 : B′

and B′ ≤ B. Then, by the context lemma we have that there exists a type C ′ such that
Γ ⊢ E[e′1] : C ′ and C ′ ≤ C, as required.

Case E-PROJ: e = new C0(v).fi and e′ = vi with fields(C0) = C f

As the typing rules for Featherweight Java are syntax-directed, the last rule used in the
derivation of Γ ⊢ e : C must have been T-FIELD. Therefore we must also have a derivation
Γ ⊢ new C0(v) : D0 with fields(D0) = D g and C = Di. By a similar argument, the last rule
used in this derivation must have been T-NEW and so D0 = C0 and we have derivations
Γ ⊢ v : B with B ≤ D. From D0 = C0 (and as fields is a function) we have C f = D g, and
hence C = Ci. Thus, Γ ⊢ vi : Bi with Bi ≤ Ci, as required.

1

Case E-INVK: e = (new C0(v)).m(u) and e′ = [x 7→ u, this 7→ new C0(v)]e with mbody(m,C0) =
(x, e)

By similar reasoning as in the previous case, the last two rules in the derivation of Γ ⊢
e : C must have been T-INVK and T-NEW with Γ ⊢ new C0(v) : C0 and Γ ⊢ u : B and
mtype(m,C0) = C → C with B ≤ C. By the method typing lemma, there exist types C ′

0 and
C ′ such that x : C, this : C ′

0 ⊢ e : C ′. By the substitution lemma we have ⊢ [x 7→ u, this 7→
new C0(v)]e : C ′′ with C ′′ ≤ C ′. By weakening we have Γ ⊢ [x 7→ u, this 7→ new C0(v)]e : C ′′.
The required result follows as C ′′ ≤ C by S-TRANS.

Case E-CAST: e = (C) (new C0(v)) and e′ = new C0(v) with C0 ≤ C

By similar reasoning as the previous cases, the last two rules in the derivation of Γ ⊢ e : C
must have been T-UCAST and T-NEW with Γ ⊢ new C0(v) : C0. The result is immediate as
C0 ≤ C.

2 Progress

The proof of progress also relies on a few supporting lemmas.

Lemma (Canonical Forms). If ⊢ v : C then v = new C(v).

Lemma (Inversion).

1. If ⊢ (new C(v)).fi : Ci then fields(C) = C f and fi ∈ f .

2. If ⊢ (new C(v)).m(u) : C then mbody(m,C) = (x, e) and |u| = |e|.

Lemma (Progress). Let e be an expression such that ⊢ e : C. Then either:

1. e is a value,

2. there exists an expression e′ such that e → e′, or

3. e = E[(B) (new A(v))] with A ̸≤ B.

Proof. By induction on ⊢ e : C, with a case analysis on the last rule used in the derivation.

Case T-VAR: e = x with ∅(x) = C

Can’t happen, as ∅(x) is undefined.

Case T-FIELD: e = e0.f with ⊢ e0 : C0 and fields(C0) = C f and C = Ci

By the induction hypothesis applied to e0 we have that either e0 is a value, there exists e′0
such that e0 → e′0, or there exists E such that e0 = E0[(B) (new A(v))] with A ̸≤ B. We
analyze each of these subcases:

2

1. If e0 is a value then by the canonical forms lemma, e0 = new C0(v) and by the inversion
lemma f ∈ f . By E-PROJ we have e → vi.

2. Alternatively, if there exists an expression such that e0 → e′0 then by E-CONTEXT we
have e = E[e0] → E[e′0] where E = [·].f .

3. Otherwise, if e0 = E0[(B) (new A(v))] with A ̸≤ B then we have e = E[(B) (new A(v))]
where E = [·].f , which finishes the case.

Case T-INVK: e = e0.m(e) with ⊢ e0 : C0 and mtype(m,C0) = B → C and ⊢ e : A and A ≤ B

By the induction hypothesis applied to e0 we have that either e0 is a value, there exists e′0
such that e0 → e′0, or there exists E such that e0 = E0[(B) (new A(v))] with A ̸≤ B. We
analyze each of these subcases:

1. If e0 is a value then by the canonical forms lemma, e0 = new C0(v). If e is a list of
values u, then by the inversion lemma we have |u| = |x| where mbody(m, C0) = (x, e′0).
By E-INVK we have e → [x 7→ u, this 7→ new C0(v)]e′0. Otherwise, let i be the least
index of an expression in e that is not a value. By the induction hypothesis applied
to ei we have that ei is a value, or there exists e′i such that ei → e′i or there exists Ei

such that ei = Ei[(B) (new A(v))] and A ̸≤ B. In the first subsubcase, then we have a
contradiction to our assumption that i is the index of the least expression in e that is not
a value. Otherwise let E = (new C0(v)).m(e1, . . . , ei−1, Ei, ei+1, . . . |e|). In the second
subcase, we have e = E[ei] → E[e′i] by E-CONTEXT. In the third subcase, we have
e = E[(B) (new A(v))] with A ̸≤ B.

2. Alternatively, if there exists an expression such that e0 → e′0 then by E-CONTEXT we
have E[e0] → E[e′0] where E = [·].m(e).

3. Otherwise, if e0 = E0[(B) (new A(v))] with A ̸≤ B then we have e = E[(B) (new A(v))]
where E = [·].m(e), which finishes the case.

Case T-NEW: e = new C(e) and fields(C) = C f and ⊢ e : B and B ≤ C

If e is a list of values u, then e is a value. Otherwise, let i be the least index of an expression
in e that is not a value. By the induction hypothesis applied to ei we have that ei is a value,
or there exists e′i such that ei → e′i or there exists Ei such that ei = Ei[(B) (new A(v))] and
A ̸≤ B. We analyze each of these subcases:

1. If ei is a value then we have a contradiction to our assumption that i is the index of the
least expression in e that is not a value.

2. If there exists e′i such that ei → e′i then let E = (new C(e1, . . . , ei−1, Ei, ei+1, . . . , |e|). By
E-CONTEXT we have e = E[ei] → E[e′i].

3. Otherwise, if there exists Ei with ei = Ei[(B) (new A(v))] and A ̸≤ B then let E =
(new C(e1, . . . , ei−1, Ei, ei+1, . . . , |e|). By construction we have e = E[(B) (new A(v))],
which finishes the case.

Case T-UCAST: e = (C) e with ⊢ e0 : D and D ≤ C

By the induction hypothesis applied to e0 we have that either e0 is a value, there exists e′0

3

such that e0 → e′0, or there exists E such that e0 = E0[(B) (new A(v))] with A ̸≤ B. We
analyze each of these subcases:

1. If e0 is a value then by the canonical forms lemma, e0 = new D(v). By E-CAST we have
e → new D(v).

2. Alternatively, if there exists an expression such that e0 → e′0 then by E-CONTEXT we
have e = E[e0] → E[e′0] where E = (C) [·].

3. Otherwise, if e0 = E0[(B) (new A(v))] with A ̸≤ B then we have e = E[(B) (new A(v))]
where E = (C) [·], which finishes the case.

Case T-DCAST: e = (C) e with ⊢ e0 : D and C ≤ D and C ̸= D

By the induction hypothesis applied to e0 we have that either e0 is a value, there exists e′0
such that e0 → e′0, or there exists E such that e0 = E0[(B) (new A(v))] with A ̸≤ B. We
analyze each of these subcases:

1. If e0 is a value then by the canonical forms lemma we have that e = new D(v). Let
E = [·]. We immediately e = E[(C) new C(v)] with D ̸≤ C.

2. Alternatively, if there exists an expression such that e0 → e′0 then by E-CONTEXT we
have e = E[e0] → E[e′0] where E = (C) [·].

3. Otherwise, if e0 = E0[(B) (new A(v))] with A ̸≤ B then we have e = E[(B) (new A(v))]
where E = (C) [·], which finishes the case.

Case T-SCAST: similar to the previous case.

4

