CS 4110 — Programming Languages and Logics

Lecture #24: Featherweight Java Properties

Based on material by Stephen Chong, Greg Morrisett, Andrew Myers, George Necula, and Radu Rugina

In this lecture, we will develop a proof of type soundness for Featherweight Java in the usual way,
as a corollary of progress and preservation. The details of these proofs will be a little different than
the ones we have seen before, however, due to the presence of subtyping and casts.

1 Preservation

The proof of preservation relies on several supporting lemmas.

Lemma (Method Typing). If mtype(m,C) = D — D and mbody(m,C) = (T, e) then there exists types
C"and D' such that T : D,this : C' Fe: D' and D' < D.

Lemma (Substitution). If 1,7 : B+ e : Cand T - u : B’ with B’ < B then there exists C' such that
'z~ ale: C"and C' < C.

Lemma (Weakening). If 'Fe:CthenI',z: Bt e: C.
Lemma (Decomposition). IfI' - Ele] : C then there exists a type B such thatT' - e : B

Lemma (Context). IfT'F Ele] : CandT' & e: Band ' - ¢’ : B’ with B’ < B then there exists a type
C’'suchthat T+ Ele'] : C"and C' < C.

Lemma (Preservation). If I - e : C and e — €' then there exists a type C' such that T+ €' : C" and
' <cC.

Proof. By induction on e — ¢/, with a case analysis of the last rule used in the derivation.

Case E-CONTEXT: e = Flej]and e; — €] and ¢ = Elé]]

By the decomposition lemma we have that there exists a type B such thatI' - e; : B. By the
induction hypothesis applied to e; we have that there exists a type B’ such that ' I- ¢ : B’
and B’ < B. Then, by the context lemma we have that there exists a type C” such that
'+ Ele}] : C"and C’" < C, as required.

Case E-PROJ: e =new Cy(?).f; and €’ = v; with fields(Cy) = C f

As the typing rules for Featherweight Java are syntax-directed, the last rule used in the
derivation of I' - e : C must have been T-FIELD. Therefore we must also have a derivation
I + new Cy(0) : Dy with fields(Dy) = D g and C = D;. By a similar argument, the last rule
used in this derivation must have been T-NEW and so Dy = Cy and we have derivations
'+ : Bwith B < D. From Dy = Cj (and as fields is a function) we have C' f = D g, and
hence C' = C;. Thus, I' - v; : B; with B; < C}, as required.

1

Case E-INVK: e = (new Cy(v)).m(u) and ¢’ = [T + u, this — new Cy(v)]e with mbody(m, Cy) =

(7,e)

By similar reasoning as in the previous case, the last two rules in the derivation of I'
e : C must have been T-INVK and T-NEW with I - new Cy(v) : Cpand I' - @ : B and
mtype(m, Cy) = C — C with B < C. By the method typing lemma, there exist types C}, and
C’ such that 7 : C, this : C} - e : C'. By the substitution lemma we have - [Z — %, this —
new Cy(v)]e : C” with C” < C'. By weakening we haveI' - [Z — @, this — new Cy(7)]e : C”.
The required result follows as C” < C' by S-TRANS.

Case E-CAST: e = (C) (new Cy(v)) and €’ = new Cyy(v) with Cyp < C

By similar reasoning as the previous cases, the last two rules in the derivationof I' - e : C
must have been T-UCAST and T-NEW with I' - new Cy(v) : Cp. The result is immediate as
Co < C.

O
2 Progress

The proof of progress also relies on a few supporting lemmas.

Lemma (Canonical Forms). If- v : C then v = new C(0).

Lemma (Inversion).
1. If+ (new C(v)).fi : C; then fields(C) = C fand f; € f.
2. IfF (new C(v)).m(w) : C then mbody(m,C) = (T, e) and |u| = [e|.

Lemma (Progress). Let e be an expression such that - e : C. Then either:

1. eisavalue,

2. there exists an expression €' such that e — €/, or

3. e = E[(B) (new A(7))] with A £ B.
Proof. By induction on I~ e : C, with a case analysis on the last rule used in the derivation.
Case T-VAR: ¢ =z with{)(z) =C

Can’t happen, as () is undefined.

Case T-FIELD: e = eq.f with I ¢y : Cp and fields(Cy) = C f and C = C;

By the induction hypothesis applied to ey we have that either e is a value, there exists ¢,
such that ey — ¢, or there exists E such that eg = Ey[(B) (new A(7))] with A £ B. We
analyze each of these subcases:

1. If g is a value then by the canonical forms lemma, ey = new Cy(7) and by the inversion
lemma f € f. By E-PROJ we have ¢ — v;.

2. Alternatively, if there exists an expression such that ey — ¢{, then by E-CONTEXT we
have e = E[eo] — E[e{)] where F = []f

3. Otherwise, if eg = Ey[(B) (new A(v))] with A £ B then we have e = E[(B) (new A(7))]
where E = []. f, which finishes the case.

Case T-INVK: e = eg.m(e) with I e : Cy and mtype(m,Cy) = B — CandFe: Aand A < B

By the induction hypothesis applied to ey we have that either ¢, is a value, there exists ¢,
such that ey — ¢, or there exists E such that eg = Ey[(B) (new A(7))] with A £ B. We
analyze each of these subcases:

1. If eg is a value then by the canonical forms lemma, ey = new Cy(v). If € is a list of
values 7, then by the inversion lemma we have [a| = |Z| where mbody(m, Cy) = (T, €).
By E-INVK we have e — [T +— u,this — new Cj(7)]ej,. Otherwise, let i be the least
index of an expression in e that is not a value. By the induction hypothesis applied
to e; we have that e; is a value, or there exists €] such that e; — ¢} or there exists E;
such that e; = F;[(B) (new A(v))] and A £ B. In the first subsubcase, then we have a
contradiction to our assumption that ¢ is the index of the least expression in € that is not
a value. Otherwise let £ = (new Cy(v)).m(e1,...,ei—1, Ei,€it1,...|€]). In the second
subcase, we have ¢ = Ele;] — Ele}] by E-CONTEXT. In the third subcase, we have
e = E[(B) (new A(v))] with A £ B.

2. Alternatively, if there exists an expression such that ey — ef then by E-CONTEXT we
have E[eg] — Eley] where E = [-].m(e).

3. Otherwise, if eg = Ey[(B) (new A(v))] with A £ B then we have e = E[(B) (new A(7))]
where E = [-].m(€), which finishes the case.

Case T-NEW: ¢ = new C(€) and fields(C) =C fandte: Band B < C

If € is a list of values @, then e is a value. Otherwise, let i be the least index of an expression
in € that is not a value. By the induction hypothesis applied to e; we have that e; is a value,
or there exists €, such that e; — €] or there exists E; such that e; = E;[(B) (new A(v))] and
A £ B. We analyze each of these subcases:

1. If e; is a value then we have a contradiction to our assumption that 7 is the index of the
least expression in e that is not a value.

2. If there exists € such that e; — ¢} then let E = (new C(ey, ..., €i—1, Ej, €41, ..., |e|). By
E-CONTEXT we have e = Ele;] — Elée}].

3. Otherwise, if there exists E; with e; = E;[(B) (new A(7))] and A £ B then let F =
(new C'(e1,...,€i—1, Ei, eiq1,...,|€|). By construction we have e = E[(B) (new A(7))],
which finishes the case.

Case T-UCAST: e=(C)ewithey:Dand D <C

By the induction hypothesis applied to ey we have that either ¢, is a value, there exists ¢

such that ey — ¢, or there exists E such that e = Ey[(B) (new A(7))] with A £ B. We
analyze each of these subcases:

1. If g is a value then by the canonical forms lemma, ey = new D(7). By E-CAST we have
e — new D(7).

2. Alternatively, if there exists an expression such that ey — ¢{, then by E-CONTEXT we
have e = Eleg] — Ele,] where E = (C) [-].

3. Otherwise, if eg = Ey[(B) (new A(v))] with A £ B then we have e = E[(B) (new A(7))]
where E = (C) [-], which finishes the case.

Case T-DCAST: e = (C)ewithtey: Dand C < Dand C # D

By the induction hypothesis applied to ey we have that either e is a value, there exists ¢,
such that ey — ¢, or there exists E such that e = Ey[(B) (new A(7))] with A £ B. We
analyze each of these subcases:

1. If e is a value then by the canonical forms lemma we have that e = new D(7). Let
E = [-]. We immediately e = E[(C) new C(v)] with D £ C.

2. Alternatively, if there exists an expression such that ¢y — ¢{, then by E-CONTEXT we
have e = Eley] — Ele(,] where E = (C) [-].

3. Otherwise, if eg = Ey[(B) (new A(v))] with A £ B then we have e = E[(B) (new A(7))]
where E = (C) [-], which finishes the case.

Case T-SCAST: similar to the previous case.

