CS 4110 — Programming Languages and Logics

Lecture #20: Type Inference

Based on material by Stephen Chong, Greg Morrisett, Andrew Myers, George Necula, and Radu Rugina

1 Type inference

In the simply typed lambda calculus, we explicitly annotate the type of function arguments: A\x:
7. e. These annotations are used in the typing rule for functions.

Dz:rhke:r

F'FXx:te:T— 7

Suppose that we didn’t want to provide type annotations for function arguments. We would need
to guess a 7 to put into the type context.

Can we still type check our program without these type annotations? For the simply typed
lambda calculus (and many of the extensions we have considered so far), the answer is yes: we
can infer (or reconstruct) the types of a program.

Let’s consider an example to see how this type inference could work.

Aa. \b. Ac.if a (b+ 1) then b else ¢

Since the variable b is used in an addition, the type of b must be int. The variable ¢ must be some
kind of function, since it is applied to the expression b + 1. Since a has a function type, the type
of the expression b + 1 (i.e., int) must be a’s argument type. Moreover, the result of the function
application (a (b+ 1)) is used as the test of a conditional, so it had better be the case that the result
type of a is also bool. So the type of a should be int — bool. Both branches of a conditional should
return values of the same type, so the type of c must be the same as the type of b, namely int.

We can write the expression with the reconstructed types:

Aa:int — bool. \b:int. Ac:int.if a (b+ 1) then b else ¢

1.1 Constraint-based typing

We now present an algorithm that, given a typing context I' and an expression e, produces a set of
constraints—equations between types (including type variables)—that must be satisfied in order
for e to be well-typed in I". We introduce type variables, which are just placeholders for types. We let
metavariables X and Y range over type variables. The language we will consider is the lambda
calculus with integer constants and addition. We assume that all function definitions contain a
type annotation for the argument, but this type may simply be a type variable X.

ex=ux|Ar.elerex|n|e + e

ro=int | X |1 —n

To formally define type inference, we introduce a new typing relation:
ke |C

Intuitively, if I' F e: 7 | C, then expression e has type 7 provided that every constraint in the set C
is satisfied.
We define the judgment I - e: 7 | C with inference rules and axioms. When read from bottom

to top, these inference rules provide a procedure that, given I" and e, calculates 7 and C such that
Fke:7|C.

CT-VAR— g7 ¢T CT-INT—
Fa:r |0 I'tn:int|0

F|—611T1|01 F|_€21T2|02
F|—€1+621int|ClUCQU{leint,TQZint}

CT-ADD

Pl—eltTl‘Cl F"@Q:TQ‘CQ

I'z: X Fe: C C'=CiuUCyU = X

v €72 | X fresh CT-AprP 1V Uin = = X}
F'FXz.e: X -7 |C Fkeje: X |

CT-ABS X fresh

Note that we must be careful with the choice of fresh type variables. We have omitted some of the
technical details that ensure the fresh type variables in the rule CT-ABS and CT-APP are chosen
appropriately.

1.2 Unification

So what does it mean for a set of constraints to be satisfied? To answer this question, we define
type substitutions (or just substitutions, when it’s clear from context).

1.2.1 Type substitution

A type substitution is a finite map from type variables to types. For example, we write [X +—
int,Y — int — int] for the substitution that maps type variable X to int, and type variable Y to
int — int. Note that the same variable may occur in both the domain and range of a substitution.
In that case, the intention is that the substitutions are performed simultaneously. For example the
substitution [X — int,Y — int — X] maps Y to int — X.

More formally, we define substitution of type variables as follows.

T fX—71€0
o(X) = . . .

X if X not in the domain of o
o(int) = int

o(t—71)=0(r) — o(7)

Note that we don’t need to worry about avoiding variable capture, since there are no constructs in
the language that bind type variables. If we had polymorphic types V.X. 7 from the polymorphic
lambda calculus, we would need to be concerned with this.

Given two substitutions ¢ and ¢/, we write o o ¢’ for the composition of the substitutions:
ogod (1) =0(d'(1)).

1.2.2 Unification

Constraints are of the form 7 = 7. We say that a substitution o unifies constraint 7 = 7" if o(7) =
o(7'). We say that substitution o satisfies (or unifies) set of constraints C'if o unifies every constraint
inC.

For example, the substitution o = [X +— int,Y — int — int] unifies the constraint X — (X —
int) = int — Y/, since

o(X - (X —int)) = int— (int—int) = o(int—Y)

So to solve a set of constraints C, we need to find a substitution that unifies C. More specifically,
suppose that I' - e : 7 | C; a solution for (I',e, 7,C) is a pair o,7’) such that o satisfies C' and
o(7) = 7'. If there are no substitutions that satisfy C, then we know that e is not typeable.

1.2.3 Unification algorithm

To calculate solutions to constraint sets, we use the idea, due to Hindley and Milner, of using
unification to check that the set of solutions is non-empty, and to find a “best” solution (from which
all other solutions can be easily generated).

The unification algorithm is as follows.

unify(0) = |
unify({r =7} uC’) =1

] (the empty substitution)

fr =7 then
unify(C")

else if 7 = X and X not a free variable of 7’ then
unify(C'{7'/X}) o [X > 7]

else if 7" = X and X not a free variable of 7 then
unify(C'{7/X}) o [X — 7]

elseif r =7, — 7 and 7’ = 7, — 7 then
unify(C' U{rg =1),11 =1 })

else

fail

The check that X is not a free variable of the other type ensures that the algorithm doesn’t produce
a cyclic substitution (e.g., X — X — X), which doesn’t make sense with the finite types that we
currently have.

The unification algorithm always terminates. (How would you go about proving this?) More-
over, it produces a solution if and only if a solution exists. The solution found is the most general
solution, in the sense that if o = unify(C) and ¢ is a solution to C, then there is some ¢” such that
o' =0"o0o0.

