
.

. .
CS 4110 – Programming Languages and Logics
Lectures #13: Simply Typed λ-calculus

.

Based on material by Stephen Chong, Greg Morrisett, Andrew Myers, George Necula, and Radu Rugina

A type is a collection of computational entities that share some common property. For example,
the type int represents all expressions that evaluate to an integer, and the type int → int represents
all functions from integers to integers. The Pascal subrange type [1..100] represents all integers
between 1 and 100.

Types can be thought of as describing computations succinctly and approximately: types are
a static approximation to the run-time behaviors of terms and programs. Type systems are a
lightweight formal method for reasoning about behavior of a program. Uses of type systems
include: naming and organizing useful concepts; providing information (to the compiler or pro-
grammer) about data manipulated by a program; and ensuring that the run-time behavior of
programs meet certain criteria.

In this lecture, we’ll consider a type system for the lambda calculus that ensures that values
are used correctly; for example, that a program never tries to add an integer to a function. The
resulting language (lambda calculus plus the type system) is called the simply-typed lambda calculus.

1 Simply-typed lambda calculus

The syntax of the simply-typed lambda calculus is similar to that of untyped lambda calculus,
with the exception of abstractions. Since abstractions define functions tht take an argument, in the
simply-typed lambda calculus, we explicitly state what the type of the argument is. That is, in an
abstraction λx :τ. e, the τ is the expected type of the argument.

The syntax of the simply-typed lambda calculus is as follows. It includes integer literals n,
addition e1 + e2, and the unit value (). The unit value is the only value of type unit.

expressions e ::= x | λx :τ. e | e1 e2 | n | e1 + e2 | ()
values v ::= λx :τ. e | n | ()
types τ ::= int | unit | τ1 → τ2

The operational semantics of the simply-typed lambda calculus are the same as the untyped
lambda calculus. For completeness, we present the CBV small step operational semantics here.

E ::= [·] | E e | v E | E + e | v + E
CONTEXT

e → e′

E[e] → E[e′]

β-REDUCTION
(λx. e) v → e{v/x}

ADD
n1 + n2 → n

n = n1 + n2

1

1.1 The typing relation

The presence of types does not alter the evaluation of an expression at all. So what use are types?
We will use types to restrict what expressions we will evaluate. Specifically, the type system

for the simply-typed lambda calculus will ensure that any well-typed program will not get stuck.
A term e is stuck if e is not a value and there is no term e′ such that e → e′. For example, the
expression 42 + λx. x is stuck: it attempts to add an integer and a function; it is not a value, and
there is no operational rule that allows us to reduce this expression. Another stuck expression is
() 47, which attempts to apply the unit value to an integer.

We introduce a relation (or judgment) over typing contexts (or type environments) Γ, expressions
e, and types τ . The judgment

Γ ⊢ e :τ

is read as “e has type τ in context Γ”.
A typing context is a sequence of variables and their types. In the typing judgment Γ ⊢ e : τ ,

we will ensure that if x is a free variable of e, then Γ associates x with a type. We can view a typing
context as a partial function from variables to types. We will write Γ, x : τ or Γ[x 7→ τ] to indicate
the typing context that extends Γ by associating variable x with with type τ . The empty context is
sometimes written ∅, or often just not written at all. For example, we write ⊢ e :τ to mean that the
closed term e has type τ under the empty context.

Given a typing environment Γ and expression e, if there is some τ such that Γ ⊢ e : τ , we say
that e is well-typed under context Γ; if Γ is the empty context, we say e is well-typed.

We define the judgment Γ ⊢ e :τ inductively.

T-INT
Γ ⊢ n : int

T-ADD
Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 + e2 : int
T-UNIT

Γ ⊢ () :unit

T-VAR
Γ ⊢ x :τ

Γ(x) = τ T-ABS
Γ, x :τ ⊢ e :τ ′

Γ ⊢ λx :τ. e :τ → τ ′ T-APP
Γ ⊢ e1 :τ → τ ′ Γ ⊢ e2 :τ

Γ ⊢ e1 e2 :τ ′

An integer n always has type int. Expression e1 + e2 has type int if both e1 and e2 have type
int. The unit value () always has type unit.

Variable x has whatever type the context associates with x. Note that Γ must contain an as-
sociating for x in order to the judgment Γ ⊢ x : τ to hold, that is, x ∈ dom(()Γ). The abstraction
λx : τ. e has the function type τ → τ ′ if the function body e has type τ ′ under the assumption that
x has type τ . Finally, an application e1 e2 has type τ ′ provided that e1 is a function of type τ → τ ′,
and e2 is an argument of the expected type, i.e., of type τ .

To type check an expression e, we attempt to construct a derivation of the judgment ⊢ e :τ , for
some type τ . For example, consider the program (λx : int. x + 40) 2. The following is a proof that
(λx : int. x + 40) 2 is well-typed.

T-APP

T-ABS

T-ADD

T-VAR
x : int ⊢ x : int

T-INT
x : int ⊢ 40: int

x : int ⊢ x + 40: int
⊢ λx : int. x + 40: int → int

T-INT
⊢ 2: int

⊢ (λx : int. x + 40) 2: int

2

1.2 Type soundness

We mentioned above that the type system ensures that any well-typed program does not get stuck.
We can state this property formally.

Theorem (Type soundness). If ⊢ e : τ and e →∗ e′ then either e′ is a value, or there exists e′′ such that
e′ → e′′.

We will prove this theorem using two lemmas: preservation and progress. Intuitively, preserva-
tion says that if an expression e is well-typed, and e can take a step to e′, then e′ is well-typed. That
is, evaluation preserves well-typedness. Progress says that if an expression e is well-typed, then
either e is a value, or there is an e′ such that e can take a step to e′. That is, well-typedness means
that the expression cannot get stuck. Together, these two lemmas suffice to prove type soundness.

1.2.1 Preservation

Lemma (Preservation). If ⊢ e :τ and e → e′ then ⊢ e′ :τ .

Proof. Assume ⊢ e : τ and e → e′. We need to show ⊢ e′ : τ . We will do this by induction on the
derivation of e → e′.

Consider the last rule used in the derivation of e → e′.

• ADD

Here e ≡ n1 + n2, and e′ = n where n = n1 + n2, and τ = int. By the typing rule T-INT, we
have ⊢ e′ : int as required.

• β-REDUCTION

Here, e ≡ (λx :τ ′. e1) v and e′ ≡ e1{v/x}. Since e is well-typed, we have derivations showing
⊢ λx : τ ′. e1 : τ ′ → τ and ⊢ v : τ ′. There is only one typing rule for abstractions, T-ABS, from
which we know x :τ ⊢ e1 :τ . By the substitution lemma (see below), we have ⊢ e1{v/x} :τ as
required.

• CONTEXT

Here, we have some context E such that e = E[e1] and e′ = E[e2] for some e1 and e2 such
that e1 → e2. Since e is well-typed, we can show by induction on the structure of E that
⊢ e1 : τ1 for some τ1. By the inductive hypothesis, we thus have ⊢ e2 : τ1. By the context
lemma (see below) we have ⊢ E[e′] :τ as required.

Additional lemmas we used in the proof above.

Lemma (Substitution). If x :τ ′ ⊢ e :τ and ⊢ v :τ ′ then ⊢ e{v/x} :τ .

Lemma (Context). If ⊢ E[e] :τ and ⊢ e :τ ′ and ⊢ e′ :τ ′ then ⊢ E[e′] :τ .

3

1.2.2 Progress

Lemma (Progress). If ⊢ e :τ then either e is a value or there exists an e′ such that e → e′.

Proof. We proceed by induction on the derivation of ⊢ e :τ .

• T-VAR

This case is impossible, since a variable is not well-typed in the empty environment.

• T-UNIT, T-INT, T-ABS

Trivial, since e must be a value.

• T-ADD

Here e ≡ e1 + e2 and ⊢ ei : int for i ∈ {1, 2}. By the inductive hypothesis, for i ∈ {1, 2}, either
ei is a value or there is an e′i such that ei → e′i.

If e1 is not a value, then by CONTEXT, e1 + e2 → e′1 + e2. If e1 is a value and e2 is not a value,
then by CONTEXT, e1 + e2 → e1 + e′2. If e1 and e2 are values, then, it must be the case that
they are both integer literals, and so, by ADD, we have e1 + e2 → n where n equals e1 plus
e2.

• T-APP

Here e ≡ e1 e2 and ⊢ e1 : τ ′ → τ and ⊢ e1 : τ ′. By the inductive hypothesis, for i ∈ {1, 2},
either ei is a value or there is an e′i such that ei → e′i.

If e1 is not a value, then by CONTEXT, e1 e2 → e′1 e2. If e1 is a value and e2 is not a value,
then by CONTEXT, e1 e2 → e1 e′2. If e1 and e2 are values, then, it must be the case that e1 is
an abstraction λx :τ ′. e′, and so, by β-REDUCTION, we have e1 e2 → e′{e2/x}.

1.3 Expressive power of the simply-typed lambda calculus

Clearly, not all expressions in the untyped lambda calculus are well-typed. Indeed, type sound-
ness implies that any lambda calculus program that gets stuck is not well-typed. But are there
programs that do not get stuck that are not well-typed? Unfortunately, the answer is yes.

First, since the simply-typed lambda calculus requires us to specify a type for function ar-
guments, any given function can only take arguments of one type. Consider, for example, the
identity function λx. x. This function may be applied to any argument, and it will not get stuck.
However, we must provide a type for the argument. If we specify λx : int. x, then this function can
only accept integers, and the program (λx : int. x) () is not well-typed, even though it does not get
stuck. Indeed, in the simply-typed lambda calculus, there is a different identity function for each
type.

Second, we can no longer write recursive functions. Consider the nonterminating expression
Ω = (λx. x x) (λx. x x). What type does it have? Let’s suppose that the type of λx. x x is τ → τ ′.
But λx. x x is applied to itself! So that means that the type of λx. x x is the argument type τ . So we
have that τ must be equal to τ → τ ′. There is no such type for which this equality holds. (At least,
not in this type system...)

This means that every well-typed program in the simply-typed lambda calculus terminates.
More formally, if ⊢ e :τ then there exists a value v such that e →∗ v.

4

