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CS 4110 – Programming Languages and Logics
Lecture #7: Denotational → Axiomatic Semantics

.  

Based on material by Stephen Chong, Greg Morrisett, Andrew Myers, George Necula, and Radu Rugina

1 More denotational semantics

Returning to our original problem from the last lecture... our goal is to find a partial function from
Store to Stores to serve as the denotation of loops while b do c. We will express C[[while b do c]]
as the fixed point of a higher-order function F :

F ∈ (Store ⇀ Store) → (Store ⇀ Store)
F (f) = {(σ, σ) | (σ, false) ∈ B[[b]]} ∪

{(σ, σ′) | (σ, true) ∈ B[[b]] ∧ ∃σ′′. ((σ, σ′′) ∈ C[[c]] ∧ (σ′′, σ′) ∈ f)}

Compare this definition with the recursive equation for C[[while b do c]] we wrote last time:

C[[while b do c]] = {(σ, σ) | (σ, false) ∈ B[[b]]} ∪
{(σ, σ′) | (σ, true) ∈ B[[b]] ∧ ∃σ′′. ((σ, σ′′) ∈ C[[c]] ∧ (σ′′, σ′) ∈ C[[while b do c]])}

The higher-order function F takes a partial function f and computes a single iteration of the loop.
However, rather than invoking itself when it needs to go around the loop again, it calls f instead.

We define the denotation of the loop to be the least fixed point of F :

C[[while b do c]] =
∪
i≥0

F i(∅)

= ∅ ∪ F (∅) ∪ F (F (∅)) ∪ F (F (F (∅))) ∪ . . .

= fix(F )

For this definition to make sense, the least fixed point fix(F ) must exist and capture the function
we intuitively expect. The reason this works is that F (along with all of the other operations
used to define our denotational semantics) is monotone, in that f ⊆ g implies F (f) ⊆ F (g), and
continuous, in that for every chain f0 ⊆ f1 ⊆ . . . we have that F (

∪
i≥0 fi) =

∪
i≥0 F (fi). Explaining

these details further requires delving into domain theory, which is unfortunately beyond the scope
of this course. (If you’re interested in understanding them, come take CS 6110 in the spring!)

1.1 Example

To see how this works, let’s work out the denotation of while foo < bar do foo := foo + 1.

F (∅) = {(σ, σ) | (σ, false) ∈ B[[b]]} ∪
{(σ, σ′) | (σ, true) ∈ B[[b]] ∧ ∃σ′′. ((σ, σ′′) ∈ C[[c]] ∧ (σ′′, σ′) ∈ ∅)}

= {(σ, σ) | σ(foo) ≥ σ(bar)}
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F 2(∅) = {(σ, σ) | (σ, false) ∈ B[[b]]} ∪
{(σ, σ′) | (σ, true) ∈ B[[b]] ∧ ∃σ′′. ((σ, σ′′) ∈ C[[c]] ∧ (σ′′, σ′) ∈ F (∅))}

= {(σ, σ) | σ(foo) ≥ σ(bar)} ∪
{(σ, σ[foo 7→ σ(foo) + 1]) | σ(foo) < σ(bar) ∧ σ(foo) + 1 ≥ σ(bar)}

But if σ(foo) < σ(bar) ∧ σ(foo) + 1 ≥ σ(bar) then σ(foo) + 1 = σ(bar), so we can simplify further:

= {(σ, σ) | σ(foo) ≥ σ(bar)} ∪
{(σ, σ[foo 7→ σ(foo) + 1]) | σ(foo) < σ(bar) ∧ σ(foo) + 1 = σ(bar)}

F 3(∅) = {(σ, σ) | (σ, false) ∈ B[[b]]} ∪
{(σ, σ′) | (σ, true) ∈ B[[b]] ∧ ∃σ′′. ((σ, σ′′) ∈ C[[c]] ∧ (σ′′, σ′) ∈ F 2(∅))}

= {(σ, σ) | σ(foo) ≥ σ(bar)} ∪
{(σ, σ[foo 7→ σ(foo) + 1]) | σ(foo) < σ(bar) ∧ σ(foo) + 1 = σ(bar)} ∪
{(σ, σ[foo 7→ σ(foo) + 2]) | σ(foo) < σ(bar) ∧ σ(foo) + 2 = σ(bar)}

F 4(∅) = {(σ, σ) | σ(foo) ≥ σ(bar)} ∪
{(σ, σ[foo 7→ σ(foo) + 1]) | σ(foo) < σ(bar) ∧ σ(foo) + 1 = σ(bar)} ∪
{(σ, σ[foo 7→ σ(foo) + 2]) | σ(foo) < σ(bar) ∧ σ(foo) + 2 = σ(bar)} ∪
{(σ, σ[foo 7→ σ(foo) + 3]) | σ(foo) < σ(bar) ∧ σ(foo) + 3 = σ(bar)}

If we take the union of all F i(∅), we get the expected semantics of the loop.

C[[while foo < bar do foo := foo + 1]]
{(σ, σ) | σ(foo) ≥ σ(bar)} ∪
{(σ, σ[foo 7→ σ(foo) + n]) | σ(foo) < σ(bar) ∧ σ(foo) + n = σ(bar)}

2 Introduction to axiomatic semantics

Now we turn to the third and last main style of semantics, axiomatic semantics. The idea in ax-
iomatic semantics is to define meaning in terms of logical specifications that programs satisfy.
This is in contrast to operational models (which show how programs execute) and denotational
models (which show what programs compute). This approach to reasoning about programs and
expressing program semantics was originally proposed by Floyd and Hoare and was developed
further by Dijkstra and Gries.

A common way to express program specifications is in terms of pre-conditions and post-
conditions:

{Pre} c {Post}

where c is a program, and Pre and Post are formulas that describe properties of the program
state, usually referred to as assertions. Such a triple is usually referred to as a partial correctness
specification (or sometimes a “Hoare triple”) and has the following meaning:
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“If Pre holds before executing c, and c terminates, then Post holds after c.”

In other words, if we start with a store σ in which Pre holds and the execution of c with respect to
σ terminates and yields a store σ′, then Post holds in store σ′.

Pre-conditions and post-conditions can be regarded as interfaces or contracts between the pro-
gram and its clients. They help users to understand what the program is supposed to yield with-
out needing to understand how the program executes. Typically, programmers write them as
comments for procedures and functions as documentation and to make it easier to maintain pro-
grams. Such specifications are especially useful for library functions for which the source code is
often not available to the users. In this case, pre-conditions and post-conditions serve as contracts
between the library developers and users of the library.

However, there is no guarantee that pre-conditions and post-conditions written informally in
comments are correct: the comments describe the intent of the developer, but they do not give a
guarantee of correctness. Axiomatic semantics addresses this problem. It shows how to rigorously
describe partial correctness statements and how to establish correctness using formal reasoning.

Note that partial correctness specifications don’t ensure that the program will terminate—this
is why they are called “partial”. In contrast, total correctness statements ensure that the program
terminates whenever the precondition holds. Such statements are denoted using square brackets:

[ Pre ] c [ Post ]

meaning:

“If Pre holds before c then c will terminate and Post will hold after c.”

In general a pre-condition specifies what the program expects before execution and the post-
conditions specifies what guarantees the program provides (if the program terminates). Here is a
simple example:

{foo = 0 ∧ bar = i} baz := 0; while foo ̸= bar do (baz := baz − 2; foo := foo + 1) {baz = −2i}

It says that if the store maps foo to 0 and bar to i before execution, then, if the program terminates,
the final store will map baz to −2i (i.e., −2 times the initial value of bar). Note that i is a logical
variable that doesn’t occur in the program and is only used to express the initial value of bar. Such
variables are sometimes called ghost variables.

This partial correctness statement is valid. That is, it is indeed the case that if we have any
store σ such that σ(foo) = 0, and

C[[baz := 0; while foo ̸= bar do (baz := baz − 2; foo := foo + 1)]]σ = σ′,

then σ′(baz) = −2σ(bar).
Note that this is a partial correctness statement: if the pre-condition is true before c, and c ter-

minates then the post-condition holds after c. There are some initial stores for which the program
will not terminate.

The following total correctness statement is true.

[foo = 0 ∧ bar = i ∧ i ≥ 0] baz := 0; while foo ̸= bar do (baz := baz− 2; foo := foo + 1) [baz = −2i]

That is, if we start with a store σ that maps foo to 0 and bar to a non-negative integer, then the
execution of the command will terminate in a final store σ′ with σ′(baz) = −2σ(bar).
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The following partial correctness statement is not valid. (Why not?)

{foo = 0 ∧ bar = i} baz := 0; while foo ̸= bar do (baz := baz + foo; foo := foo + 1) {baz = i}

In the rest of our discussion of axiomatic semantics we will focus exclusively on partial cor-
rectness, addressing the following issues:

• What logic do we use for writing assertions? That is, what can we express in pre-conditions
and post-condition?

• What does it mean that an assertion is valid? What does it mean that a partial correctness
statement {Pre} c {Post} is valid?

• How can we prove that a partial correctness statement is valid?
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