CS 4110 — Programming Languages and Logics

Lecture #3: Big-step semantics

Based on material by Stephen Chong, Greg Morrisett, Andrew Myers, George Necula, and Radu Rugina

1 Large-step operational semantics

In the last lecture we defined a semantics for our language of arithmetic expressions using a small-
step evaluation relation —C Config x Config (and its reflexive and transitive closure — *). In this
lecture we will explore an alternative approach—Ilarge-step operational semantics—which yields
the final result of evaluating an expression directly.

Defining a large-step semantics boils down to specifying a relation | that captures the evalua-
tion of an expression. The |} relation has the following type:

| C Store x Exp x Store x Int.

We write (o, e) || (¢/,n) to indicate that (o, e,0’,n) €. In other words, the expression e with store
o evaluates in one big step to the final store ¢’ and integer n.
We define the relation |} inductively, using inference rules:

n=o(x)
INT ——— VAR

(0,n) I (o,m) (o,2) I (o)

<O’, 61> U (a’,m) <UI,€2> l} <O’”,n2> n=mni -+ ns

i ADD
(o,e1+e2) | (07,)

(g e1) U (o' ,m) (0 e2) Y (0", m2) n=mnyxny

MUuUL
<U7 e1* 62> ‘U’ <0-”7 n)

<Ua 61> U <0Jan1> <OJ[:E = nl]’ 62>) <U”7n2>

ASSGN
(0,2 :=¢e1; e2) |} (0", n2)

To illustrate the use of these rules, consider the following proof tree, which shows that evaluating
(0, foo :=3; foo * bar) using a store o such that o(bar) = 7 yields ¢/ = o[foo — 3] and 21 as a result:

VAR VAR
(o', foo) |} (o', 3) (o', bar) |} (o', 7)

(0,3) |} (0,3) INT (o', foo * bar) || (o', 21) MUt

(0, foo :=3; foo* bar) || (o', 21)

ASSGN

A closer look to this structure reveals the relation between small step and large-step evaluation:
a depth-first traversal of the large-step proof tree yields the sequence of one-step transitions in
small-step evaluation.

2 Equivalence of semantics

A natural question to ask is whether the small-step and large-step semantics are equivalent. The
next theorem answers this question affirmatively.

Theorem (Equivalence of semantics). For all expressions e, stores o, and integers n we have:
(o,€) | (o, n) if and only if (o, e) —* (o', n)
Proof sketch. We show each direction separately.
—: We want to prove that the following property P holds for all expressions e € Exp:
P(e) 2 Vo,0’ € Store. ¥n € Int. (0,¢) || (0/,n) = (0,e) —*(0’,n)

We proceed by structural induction on e. We have to consider each of the possible axioms
and inference rules for constructing an expression.

Case e = z: Assume that (o, z) || (0/,n). That is, there is some derivation in the large-step
operational semantics whose conclusion is (o, z) || (¢,n). There is only one rule whose
conclusion matches the configuration (o, z): the large-step rule VAR. Thus, we have
n = o(z) and ¢’ = o. By the small-step rule VAR, we also have (0,z) — (o,n). We
conclude that (o, z) — *(o, n), which finishes the case.

Case ¢ = n: Assume that (o, n) | (¢0’,n’). There is only one rule whose conclusion matches
(o,n): the large-step rule INT. Thus, we have n’ = n and ¢’ = 0. We immediately have
(o,n) —*(o,n) as the — * relation is reflexive.

Case e = e +ep: This is an inductive case. We want to prove that if P(e;) and P(e2) hold,
then P(e) also holds. Let’s write out P(e;), P(ez2), and P(e) explicitly.

Ple1) = Vn,o,0".(o,e1) | {o/,n) = (0,e1) —*{0’,n)
Pley) = Vn,o,0. {0,e3) | {0/, n) = (0,e3) —* (0’ ,n)
Ple) = Vn,o,0'. (0,e1+e2) || (0/,n) = (0,e1+e2) —*(0’,n)

Let’s assume that P(e;) and P(ez) hold. Also assume that there exist o, ¢’ and n such
that (o, e1 +e2) |} (0/,n). We need to show that (o, e1 +e2) — *(o/, n).
We assumed that (o, e; +e3) | (¢/,n). This means that there is some derivation whose
conclusion is (o, e1 +e2) |} (¢/,n). By inspection, we see that only one rule has a conclu-
sion of this form: the ADD rule. Thus, the last rule used in the derivation was ADD and
it must be the case that (o, e1) || (¢”,n1) and (", e2) | (¢, n2) hold for some ny and nq
with n = ny + no.
By the induction hypothesis P(e;), as (0, e1) |} (¢”,n1), we musthave (o, e1) — *(c”,n1).
Likewise, by induction hypothesis P(ez), we have (¢, e2) — *(0”, n2). By Lemma 1 be-
low, we have,

<0, el +€2> —>*<0'//, n +€2>,

and by another application of Lemma 1 we have:
(0" 1 +e3) —*(a’,n1+n2)
Finally, by the small-step ADD rule we have:
(0" ,ny+ng) — (o,n)

Thus, we have (o, e +e3) — *(0’, n), which finishes the case.

2

Case ¢ = e1 * e9. Similar to case for e; + e above.
Case e = z := eq; ep. Omitted. Try it as an exercise.

<=: We proceed by induction on the derivation of (o, e) — *(¢/, n) with a case analysis on the last
rule used.

Case REFL: Then e = n and ¢/ = 0. We immediately have (o, n) |} (o,n) by the large-step
rule INT.

Case TRANS: Then (0,¢) — (0”,¢") and (0”,€¢”) — *(o/,n). In this case, the induction
hypothesis gives (¢”,€"”) || (¢/,n). The result follows from Lemma 2 below.

O

Lemma 1. If (o,¢e) —*(c’, n), then for all ny and es the following hold:

o (0,e+ey) =0/ n+es)

o (o,exes) — (0, n*ey)

i <07 ny+ 6) _)*<0Ja n +TL>

o (o0,n1xe) — %0/, ny*n)
Proof. By induction on the derivation of (o, ¢e) —*(c’, n). O
Lemma 2. Foralle, ¢, o, and n, if (o,e) — (0", ¢") and (c”,€") | (¢/,n), then (0,¢e) | (¢/,n).
Proof. By induction on the derivation of (o, e) — (o”,). O

