## CS 4110 – Programming Languages and Logics Lecture #3: Big-step semantics



Based on material by Stephen Chong, Greg Morrisett, Andrew Myers, George Necula, and Radu Rugina

## 1 Large-step operational semantics

In the last lecture we defined a semantics for our language of arithmetic expressions using a small-step evaluation relation  $\rightarrow \subseteq$  Config  $\times$  Config (and its reflexive and transitive closure  $\rightarrow$ \*). In this lecture we will explore an alternative approach—*large-step* operational semantics—which yields the final result of evaluating an expression directly.

Defining a large-step semantics boils down to specifying a relation  $\Downarrow$  that captures the evaluation of an expression. The  $\Downarrow$  relation has the following type:

$$\Downarrow \subseteq \mathbf{Store} \times \mathbf{Exp} \times \mathbf{Store} \times \mathbf{Int}.$$

We write  $\langle \sigma, e \rangle \Downarrow \langle \sigma', n \rangle$  to indicate that  $(\sigma, e, \sigma', n) \in \Downarrow$ . In other words, the expression e with store  $\sigma$  evaluates in one big step to the final store  $\sigma'$  and integer n.

$$\frac{1}{\langle \sigma, n \rangle \Downarrow \langle \sigma, n \rangle} \text{ Int } \frac{n = \sigma(x)}{\langle \sigma, x \rangle \Downarrow \langle \sigma, n \rangle} \text{ Var}$$

$$\frac{\langle \sigma, e_1 \rangle \Downarrow \langle \sigma', n_1 \rangle}{\langle \sigma, e_1 \rangle \Downarrow \langle \sigma', e_2 \rangle \Downarrow \langle \sigma'', n_2 \rangle} \frac{n = n_1 + n_2}{\langle \sigma, e_1 + e_2 \rangle \Downarrow \langle \sigma'', n \rangle} \text{ Add}$$

$$\frac{\langle \sigma, e_1 \rangle \Downarrow \langle \sigma', n_1 \rangle}{\langle \sigma, e_1 * e_2 \rangle \Downarrow \langle \sigma'', n_2 \rangle} \frac{n = n_1 \times n_2}{\langle \sigma, e_1 * e_2 \rangle \Downarrow \langle \sigma'', n_2 \rangle} \text{ Mul}$$

$$\frac{\langle \sigma, e_1 \rangle \Downarrow \langle \sigma', n_1 \rangle}{\langle \sigma, x := e_1 : e_2 \rangle \Downarrow \langle \sigma'', n_2 \rangle} \frac{\langle \sigma'[x \mapsto n_1], e_2 \rangle \Downarrow \langle \sigma'', n_2 \rangle}{\langle \sigma, x := e_1 : e_2 \rangle \Downarrow \langle \sigma'', n_2 \rangle} \text{ Assgn}$$

To illustrate the use of these rules, consider the following proof tree, which shows that evaluating  $\langle \sigma, foo := 3 ; foo * bar \rangle$  using a store  $\sigma$  such that  $\sigma(bar) = 7$  yields  $\sigma' = \sigma[foo \mapsto 3]$  and 21 as a result:

$$\frac{\overline{\langle \sigma, 3 \rangle \Downarrow \langle \sigma, 3 \rangle} \text{ Int } \frac{\overline{\langle \sigma', foo \rangle \Downarrow \langle \sigma', 3 \rangle} \text{ Var } \overline{\langle \sigma', bar \rangle \Downarrow \langle \sigma', 7 \rangle} \text{ Var }}{\langle \sigma', foo * bar \rangle \Downarrow \langle \sigma', 21 \rangle} \text{ Mul } \overline{\langle \sigma, foo := 3 \text{ }; foo * bar \rangle \Downarrow \langle \sigma', 21 \rangle} \text{ Assgn}}$$

A closer look to this structure reveals the relation between small step and large-step evaluation: a depth-first traversal of the large-step proof tree yields the sequence of one-step transitions in small-step evaluation.

## 2 Equivalence of semantics

A natural question to ask is whether the small-step and large-step semantics are equivalent. The next theorem answers this question affirmatively.

**Theorem** (Equivalence of semantics). For all expressions e, stores  $\sigma$ , and integers n we have:

$$\langle \sigma, e \rangle \Downarrow \langle \sigma', n \rangle$$
 if and only if  $\langle \sigma, e \rangle \rightarrow *\langle \sigma', n \rangle$ 

*Proof sketch.* We show each direction separately.

 $\Longrightarrow$ : We want to prove that the following property P holds for all expressions  $e \in \mathbf{Exp}$ :

$$P(e) \triangleq \forall \sigma, \sigma' \in \mathbf{Store}. \ \forall n \in \mathbf{Int}. \ \langle \sigma, e \rangle \Downarrow \langle \sigma', n \rangle \Longrightarrow \langle \sigma, e \rangle \rightarrow^* \langle \sigma', n \rangle$$

We proceed by structural induction on *e*. We have to consider each of the possible axioms and inference rules for constructing an expression.

**Case** e = x: Assume that  $\langle \sigma, x \rangle \Downarrow \langle \sigma', n \rangle$ . That is, there is some derivation in the large-step operational semantics whose conclusion is  $\langle \sigma, x \rangle \Downarrow \langle \sigma, n \rangle$ . There is only one rule whose conclusion matches the configuration  $\langle \sigma, x \rangle$ : the large-step rule VAR. Thus, we have  $n = \sigma(x)$  and  $\sigma' = \sigma$ . By the small-step rule VAR, we also have  $\langle \sigma, x \rangle \rightarrow \langle \sigma, n \rangle$ . We conclude that  $\langle \sigma, x \rangle \rightarrow^* \langle \sigma, n \rangle$ , which finishes the case.

**Case** e = n: Assume that  $\langle \sigma, n \rangle \Downarrow \langle \sigma', n' \rangle$ . There is only one rule whose conclusion matches  $\langle \sigma, n \rangle$ : the large-step rule INT. Thus, we have n' = n and  $\sigma' = \sigma$ . We immediately have  $\langle \sigma, n \rangle \to {}^* \langle \sigma, n \rangle$  as the  $\to {}^*$  relation is reflexive.

**Case**  $e = e_1 + e_2$ : This is an inductive case. We want to prove that if  $P(e_1)$  and  $P(e_2)$  hold, then P(e) also holds. Let's write out  $P(e_1)$ ,  $P(e_2)$ , and P(e) explicitly.

$$P(e_1) = \forall n, \sigma, \sigma'. \langle \sigma, e_1 \rangle \Downarrow \langle \sigma', n \rangle \Longrightarrow \langle \sigma, e_1 \rangle \rightarrow^* \langle \sigma', n \rangle$$

$$P(e_2) = \forall n, \sigma, \sigma'. \langle \sigma, e_2 \rangle \Downarrow \langle \sigma', n \rangle \Longrightarrow \langle \sigma, e_2 \rangle \rightarrow^* \langle \sigma', n \rangle$$

$$P(e) = \forall n, \sigma, \sigma'. \langle \sigma, e_1 + e_2 \rangle \Downarrow \langle \sigma', n \rangle \Longrightarrow \langle \sigma, e_1 + e_2 \rangle \rightarrow^* \langle \sigma', n \rangle$$

Let's assume that  $P(e_1)$  and  $P(e_2)$  hold. Also assume that there exist  $\sigma, \sigma'$  and n such that  $\langle \sigma, e_1 + e_2 \rangle \Downarrow \langle \sigma', n \rangle$ . We need to show that  $\langle \sigma, e_1 + e_2 \rangle \rightarrow {}^*\langle \sigma', n \rangle$ .

We assumed that  $\langle \sigma, e_1 + e_2 \rangle \Downarrow \langle \sigma', n \rangle$ . This means that there is some derivation whose conclusion is  $\langle \sigma, e_1 + e_2 \rangle \Downarrow \langle \sigma', n \rangle$ . By inspection, we see that only one rule has a conclusion of this form: the ADD rule. Thus, the last rule used in the derivation was ADD and it must be the case that  $\langle \sigma, e_1 \rangle \Downarrow \langle \sigma'', n_1 \rangle$  and  $\langle \sigma'', e_2 \rangle \Downarrow \langle \sigma', n_2 \rangle$  hold for some  $n_1$  and  $n_2$  with  $n = n_1 + n_2$ .

By the induction hypothesis  $P(e_1)$ , as  $\langle \sigma, e_1 \rangle \Downarrow \langle \sigma'', n_1 \rangle$ , we must have  $\langle \sigma, e_1 \rangle \to {}^*\langle \sigma'', n_1 \rangle$ . Likewise, by induction hypothesis  $P(e_2)$ , we have  $\langle \sigma'', e_2 \rangle \to {}^*\langle \sigma', n_2 \rangle$ . By Lemma 1 below, we have,

$$\langle \sigma, e_1 + e_2 \rangle \to {}^*\langle \sigma'', n_1 + e_2 \rangle,$$

and by another application of Lemma 1 we have:

$$\langle \sigma'', n_1 + e_2 \rangle \rightarrow^* \langle \sigma', n_1 + n_2 \rangle$$

Finally, by the small-step ADD rule we have:

$$\langle \sigma'', n_1 + n_2 \rangle \to \langle \sigma, n \rangle$$

Thus, we have  $\langle \sigma, e_1 + e_2 \rangle \rightarrow^* \langle \sigma', n \rangle$ , which finishes the case.

**Case**  $e = e_1 * e_2$ . Similar to case for  $e_1 + e_2$  above.

**Case**  $e = x := e_1; e_2$ . Omitted. Try it as an exercise.

 $\Leftarrow$ : We proceed by induction on the derivation of  $\langle \sigma, e \rangle \to {}^*\langle \sigma', n \rangle$  with a case analysis on the last rule used.

**Case Refl.:** Then e = n and  $\sigma' = \sigma$ . We immediately have  $\langle \sigma, n \rangle \Downarrow \langle \sigma, n \rangle$  by the large-step

**Case Trans:** Then  $\langle \sigma, e \rangle \rightarrow \langle \sigma'', e'' \rangle$  and  $\langle \sigma'', e'' \rangle \rightarrow {}^*\langle \sigma', n \rangle$ . In this case, the induction hypothesis gives  $\langle \sigma'', e'' \rangle \downarrow \langle \sigma', n \rangle$ . The result follows from Lemma 2 below.

**Lemma 1.** If  $\langle \sigma, e \rangle \to *\langle \sigma', n \rangle$ , then for all  $n_1$  and  $e_2$  the following hold:

- $\langle \sigma, e + e_2 \rangle \rightarrow {}^*\langle \sigma', n + e_2 \rangle$
- $\langle \sigma, e * e_2 \rangle \rightarrow {}^* \langle \sigma', n * e_2 \rangle$
- $\langle \sigma, n_1 + e \rangle \rightarrow {}^*\langle \sigma', n_1 + n \rangle$   $\langle \sigma, n_1 * e \rangle \rightarrow {}^*\langle \sigma', n_1 * n \rangle$

*Proof.* By induction on the derivation of  $\langle \sigma, e \rangle \to {}^*\langle \sigma', n \rangle$ . 

**Lemma 2.** For all  $e, e', \sigma$ , and  $n, if \langle \sigma, e \rangle \rightarrow \langle \sigma'', e'' \rangle$  and  $\langle \sigma'', e'' \rangle \Downarrow \langle \sigma', n \rangle$ , then  $\langle \sigma, e \rangle \Downarrow \langle \sigma', n \rangle$ .

*Proof.* By induction on the derivation of  $\langle \sigma, e \rangle \rightarrow \langle \sigma'', e'' \rangle$ .