Name: ______ ID: _____

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = a T(n/b) + f(n),$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) can be bounded asymptotically as follows.

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

For each question, indicate which case of the master theorem applies:

- 1. Case 1 applies
- 2. Case 2 applies
- 3. Case 3 applies
- 0. None of them (the master theorem does not apply)
- (a) $T(n) = 9 T(n/3) + n^2$ Answer: 2

Justification: $f(n) = n^2$ here, and $n^2 = \Theta(n^{\log_b a}) = n^2$.

(b) $T(n) = 3 T(n/3) + n \lg n$ Answer: 0

Justification: $n \lg n = \Omega(n)$. but not $\Omega(n^{1+\epsilon})$ for any $\epsilon > 0$, since $\lg n = o(n^k)$ for all k > 0 as described in the text and discussed in lecture.

(c) $T(n) = 5 T(n/4) + n \lg n$ Answer: 1

Justification: $\lg n = o(n^k)$ for all k > 0, so $n \lg n = o(n n^k)$

(d) T(n) = T(n/2) + 2T(n/4) + n Answer: 0

Justification: This is not in the correct format, so the theorem doesn't apply.