Outline

- Announcements
 - Homework I due Wed. 5PM by e-mail
 - Subject: CIS 402 Homework 1
 - Plain text
 - · Not allowed to use errorbar
 - Try to do plotCI without looking at it
 - Honor system appliesToday is last day to add/drop 402!
- Printing and saving
- Summary so far
- More 1D functions
- bar: 1D function, 2D objects

Criticisms of subplot

- Numbering is consistent with English, but not with Matlab
- Too much white space--gets ugly if m or n
- [fax,ax]=multiax(m,n,{limits}) is a "flexible, hands-on" alternative to subplot
 - Fax=handle to invisible axes encompassing whole figure

 useful for annotating figure

 1 (

 - 1 (1,1) 4 (1,2) - ax=m-by-n matrix of handles to the m*n2 (2,1) subplots 5 (2,2) 3 (3,1) 6 (3,2)
 - numbered "correctly"
 - limits allows you to control space around

Printing and Saving

- Print through GUI or command line
 - print -depsc fname.eps will save gcf to an EPS file
 - print -djpeg fname.jpg will save gcf to a
 - Can also save figure to a .fig file from the GUI
 - Opening the file (from GUI) will recreate the

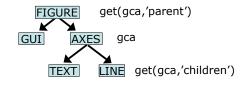
Printing and Saving

- Can save figure to a .fig file from the
 - Opening the file (from GUI) will recreate the
 - The figure will contain same objects as before
 - can add to the figure or edit objects
- Print through GUI or command line
 - print by itself will send gcf to default printer

Exporting graphics

- Can save figures to several standard graphics formats using print
 - print -djpeg fname.jpg will save gcf to a JPEG file
 - JPEG (Joint Photographic Experts Group) file is a standard raster file
 - a raster file is a matrix of pixels

 - This means that they have a fixed resolution
 if you blow up a JPEG, the quality will decline (you will begin to see the pixels)
 - can controll the resolution using -r<pixels/inch>


 JPEGs are extremely portable (can view them in a web browser) and compact
 - Good if your figure is very complex (lots of 2D objects and color)

Exporting Graphics

- print -depsc fname.eps will save gcf to an EPS file
 - EPS (encapsulated post script) is standard format for saving vector graphics
 - Vector graphics are made up of mathematical objects-lines, Bezier curves, polygons, text.
 - The objects have properties such as line weights, fonts, & colors
 - · Because the objects are represented mathematically, EPS files can be scaled without loosing resolution
 - They are less portable than JPEGs (need special software like Illustrator, or ghostscript)
 - However, you can edit the file easily

Handle Graphics Summary

- We've only learned about 3 graphics objects
- But, we now know how Matlab's graphics are organized and how to manipulate them:

Handle Graphics Summary

- Objects have properties (like fields in a database or a Java object)
- Each object has a handle (like a name or pointer)
- We can use the handle to examine properties and change them using set and get
- Other objects have new properties, but how we work with them is the same

A Demonstration

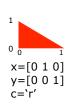
- To prove that we understand handle graphics, I will show some specialized 1D plots, and we will try to figure out how they are implemented in Matlab
- For each one, we will answer:
 - What objects are created?
 - What are their properties?

Demo

Name	Descrip.	Objects Created	Properties
spy	matrix structure	figure, axes, line	axes: ydir=reverse line:marker=`.'
semilogy	Log-scale	figure, axes, line	axes: yscale=log
polar	polar coordinates	figure, axes, line, (patch, line, text)	axes: visibility=off
plotyy	plot against 2 y-scales	figure, 2x(axes,line)	axes2:yaxislocation =right, color=none
bar	bar plots	figure, axes, patch	patch: facecolor='b'

What about bar?

- bar represents a 1D function using 2D objects--rectangles
- the rectangles are represented in Matlab as a patch object
 - Patches are polygons
 - Patches can have complicated colors
 - Patches (or related surface objects) are used by all higher-order functions


Key properties of patch objects

- edgecolor--color of the edges
- facecolor--color inside the the patch
- Both of these can be set to a specific color (or none)
- Or, we can prescribe another dimension of data at each vertex and let it control the color

	,	1	
4	_	1	
		I	

Drawing patches

- Lots of functions produce patches
- patchies
 patch is the lowest level function (followed closely by fill)
 patch(x,y,c)--x and y specify vertex coordinates, c controls the color
 patch(X,Y,C)--Each column of X, Y, and C is a separate patch

