Convert the following CFG to a PDA

$$S \to aAA$$

$$A \rightarrow aS|bS|a$$

The PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ is defined as

$$Q=\{q\}$$

$$\Sigma = \{a, b\}$$

$$\Gamma = \{a, b, S, A\}$$

$$q_0 = q$$

$$Z_0 = S$$

$$F = \{\}$$

And the transition function is defined as:

$$\delta(q, \epsilon, S) = \{(q, aAA)\}\$$

$$\delta(q,\epsilon,I) = \{(q,aS), (q,bS), (q,a)\}$$

$$\delta(q, a, a) = \{(q, \epsilon)\}\$$

$$\delta(q, b, b) = \{(q, \epsilon)\}\$$

Homework 9

Exercise 6.3.3 Solutions

In the following, S is the start symbol, e stands for the empty string, and Z is used in place of Z_0 .

1. $S \rightarrow [qZq] / [qZp]$

The following four productions come from rule (1).

- 2. [qZq] -> 1[qXq][qZq]
- 3. [qZq] -> 1[qXp][pZq]
- 4. [qZp] -> 1[qXq][qZp]
- 5. [qZp] -> 1[qXp][pZp]

The following four productions come from rule (2).

- 6. $[qXq] \rightarrow I[qXq][qXq]$
- 7. [qXq] -> 1[qXp][pXq]
- 8. [qXp] -> 1[qXq][qXp]
- 9. [qXp] -> 1[qXp][pXp]

The following two productions come from rule (3).

10.
$$[qXq] \rightarrow 0[pXq]$$

11.
$$[qXp] -> 0[pXp]$$

The following production comes from rule (4).

12.
$$[qXq] -> e$$

The following production comes from rule (5).

13.
$$[pXp] -> 1$$

The following two productions come from rule (6).

14.
$$[pZq] -> 0[qZq]$$

15.
$$[pZp] -> 0[qZp]$$

Course 381 Homework 9

Problem 3 [Exercise 7.2.1 b,d,e in book]

Exercise 7.2.1(b)

We will use L to denote the language $\{a \ b \ c \mid i \le n\}$. For any constant n > 0, take a string to be $z = a \ b \ c$. Clearly $z \ \epsilon$ L. Now the string will be decomposed into z = uvwxy, with $vwx \ne \epsilon$ and $|vwx| \le n$. We then have several cases to consider:

• vwx ε a

Pump up, and we will have more a's than b's. It does not belong to L.

• vwx ε b

Pump up, and we will have more b's than a's.It does not belong to \boldsymbol{L} .

• vwx ε c

Pump up, and we will have more c's than a's and b's. It does not belong to L.

• vwx εa b

Pump down, and we will have less a's and b's than c's. It does not belong to L.

• vwx ε b c

Pump up, and we will have more c's than a's. It does not belong to L.

Note that it is impossible to have vwx $\epsilon\,a\,b\,c\,$, since $|vwx| \le n.$ So we have finished the proof that L is not a CFL.

Exercise 7.2.1(d)

Let *n* be the pumping-lemma constant and consider $z = 0^n I^{n^2}$. We break Z = uvwxy according to the pumping lemma. If vwx consists only of 0's, then uwy has n^2 1's and fewer than *n* 0's; it is not in the language. If vwx has only 1's, then we derive a contradiction similarly. If either v or x has both 0's and 1's, then uv^2wx^2y is not in 0*I*, and thus could not be in the language.

Finally, consider the case where v consists of 0's only, say k 0's, and x consists of m 1's only, where k and m are both positive. Then for all i, $uv^{i+1}wx^{i+1}y$ consists of n+ik 0's and n^2+im 1's. If the number of 1's is always to be the square of the number of 0's, we must have, for some positive k and m: $(n+ik)^2 = n^2 + im$, or $2ink + i^2k^2 = im$. But the left side grows quadratically in i, while the right side grows linearly, and so this equality for all i is impossible. We conclude that for at least some i, $uv^{i+1}wx^{i+1}y$ is not in the language and have thus derived a contradiction in all cases.

Exercise 7.2.1(e)

We will use L to denote the language $\{a\ b\ c\ |\ n\leq i\leq 2n\}$. For any constant n>0, take a string to be $z=a^nb^nc^{2n}$. Clearly $z\in L$. Now the string will be decomposed into z=uvwxy, with $vwx\neq \epsilon$ and $|vwx|\leq n$. We then have several cases to consider:

• vwx ε a

Pump up, and we will have more a's than b's. It does not belong to L.

• vwx ε b

Pump up, and we will have more b's than a's.It does not belong to L.

• vwx ε c

Pump up, and we will have more 2n c's. It does not belong to L.

• vwx ε a b

Pump down, and we will have n-1 a's and n-1 b's but still 2n c's which is not in the range. It does not belong to L.

• vwx ε b c

Pump up, and we will have more b's and a's. It does not belong to L.

Note that it is impossible to have vwx ϵ a b c, since $|vwx| \le n$. So we have finished the proof that L is not a CFL.

CS 381 Homework #9 Problem 4

Question 7.4.3

a)

{S, A, C}				
{B}	{B}			
{B}	{S, C}	{B}		
{S, C}	{S, A}	{S, C}	{S, A}	
{A, C}	{B}	{A, C}	{B}	{A, C}
a	b	a	b	a

Since S is in the top left box, *ababa* is in the language.

b)

{S,C}				
{A,S,C}	{S,C}			
Φ	{A,S,C}	{B}		
{A,S}	{B}	{B}	{S,C}	
{B}	{A,C}	{A,C}	{A,C}	{B}
b	a	a	a	b

Since S is in the top left box, *baaab* is in the language.

c)

{S, A, C}				
{S, A, C}	{B}			
{B}	{B}	{S, A, C}		
{B}	{S, C}	{S, A}	{S, A}	
{A, C}	{A,C}	{B}	{A, C}	{B}
а	а	h	а	h

Since S is in the top left box, *aabab* is in the language.

CS 381/481 Homework 9

7.4.5

Let N_{ijA} denote the number of distinct parse trees for substring $a_i ... a_j$ of the input w, starting from variable A (i.e., with A as the root of the parse tree). Note that we are using A here as a metavariable, not any particular variable in G that might have been named A. N_{1nS} , where n = |w| and S the starting variable of G, is the value we are interested in. We can augment the CYK algorithm to compute each N_{ijA} as we compute the corresponding X_{ij} . That is, after computing X_{ij} in CYK, we proceed to compute N_{ijA} for each variable A.

Initially, we set all N_{ijA} to 0.

For the base case, we can compute the first row of N as follows. N_{iiA} is 1 if $A \to a_i$ is a production of G. Otherwise, N_{iiA} remains 0.

To compute N_{ijA} , j-i>0, we look at each of the pairs $(X_{ii}, X_{i+1,j}), \ldots, (X_{i,j-1}, X_{jj})$ the same way plain CYK did. For each pair, we look at each element of the cross product of that pair. That is, for $(X_{ik}, X_{k+1,j})$, we consider all pairs (B, C) such that $B \in X_{ik}$ and $C \in X_{k+1,j}$. If $A \to BC$ is a production, we increment N_{ijA} by $N_{ikB} \times N_{k+1,j,C}$.

When the algorithm completes, N_{1nS} would contain the solution.

For the special case when $w = \varepsilon$, this algorithm won't work, but the answer is easy. It's 1 if $S \to \varepsilon$ is a production, 0 otherwise.