
CS 381 Homework 6 Solutions

1.

L = L0 ∩ L1
 = { w#w(0 + 1)# | w (0 + 1)* }

Describe the set L* ∩ 0#L*(0+1) * :

L* ∩ 0#L* (0+1) * is the set
{ 0 # w0 # w1 # w2 # … # w2n # , where w0 = 0(0+1), wn = wn-1(0+1), and n>=0 }
This is another alternating blocks problem. Each block forces the next block to equal
w(0+1), and the string must start with 0# due to the right side of the intersection.

Modify the set so that it has an odd number of blocks:

L* (0 + 1) *# ∩ 0#L*
Since each instance of L has 2 blocks, this set is guarenteed to have an odd number of
blocks.

CS381, Homework #6 Solutions Question 4.1.1

Prove that the language of balanced parenthesis is not regular
Proof by the Pumping Lemma: Suppose we select w from L such that

w = (n)n where n is the n from the pumping lemma. Now we know that
xy can only contain opening parenthesis since |xy| ≤ n. When we pump
on this string its easy to see that we will only increase the number of open-
ing parenthesis, and since the pumped string contains a different number of
opening and closing parenthesis, they cannot possibly be balanced.

Show that {0n1m0n |m and n arbitrary integers} is not regular
Proof by the Pumping Lemma: Select w = 0n1n0n, where n is the n from

the pumping lemma. This means that xy may only contain 0’s, and thus
when we pump xykz, then we will have 0n+m1n0n, where m is dependant
on how the initial zeros are divided between x and y. Since this string is not
in the original set, the language is not regular.

Show that {0n12n|n ≥ 1} is not regular.
Proof by Pumping Lemma: Suppose we select w from L such that w =

0n12n where n is the n from the pumping lemma. Now any choice of xy
must include be all zeros, because |xy| ≤ n, by the definition of the pumping
lemma. Thus, when we pump on this string, we will only increase the number
of zeros, and we will be left with the string 0n+m12n for some m dependant
on how we break up the initial zeros into x and y. This is not in the original
set, so the language is not regular.

1

4.1.4:

b) If the adversary picks n = 3, then we cannot pick a w of length at least n.

d) L = {01*0*1}

Assume L is regular.

By pumping lemma, ∃ n of pumping lemma

Select w, |w| > n

We will choose w = 01
n
0

n
1

By lemma: w can be written as xyz and adversary chooses the following breakdown:

x = 0

y ∈1
+

z will take on the remainder of the string

xy
i
z ∈L //whatever i we pick, xy

i
z will be in the language and we lose

=> L is regular.

Course 381

Homework 6

Problem 3 [Exercise 4.1.4 in book]

CS 381 – Homework 6 – Question 4 – Solution

4.3.2

The first step to finding out whether there are 100 strings in a regular expression would
be to convert the expression in to a DFA. Once we have the DFA, there is one main
thing to notice: if our DFA has n nodes then if we can generate a string of length between
n and 2n then the DFA has infinite strings. Otherwise, we can use brute force to generate
all strings of length less than n and count them. If there are more than 100 of them, then
we return true, otherwise we return false.

Thus, the main observation of this problem is that we have to bound the length of our
strings by n, otherwise it is possible to search forever.

Problem 4.4.2

(a) The table of states that are distinguishable from one another:

A
x B
x x C*

x x D
x x x E
x x x x F*

x x x x G
x x x x x H
x x x x x x I*

This gives us the following sets of equivalent states:
(A,D,G)
(B,E,H)
(C,F,I)

(b) We build the following DFA by combining the original nine states into three states
that represent the equivalent states from part (a):

A,D,G

B,E,HC,F, I

0, 1

1

0, 1

0

1

	6.1 soln.pdf
	381_hw6_#2-411.pdf
	381 - HW 6 - Problem 3 Solutions.pdf
	hw6 prob 4-4.3.2 solution.pdf
	381,h6,prob5.pdf

