CS381 Fall 2005 Second Mid Term Olin 155

Friday, Nov. 4, 2005 9:05-9:55 am

1. Is the language $L = \{a^i b^j c^i d^j | i \ge 1, j \ge 1\}$ a context-free language? If yes give a Chomsky normal form context-free grammar for it. If not use the pumping lemma to prove that it is not a context-free language.

No it is not a context-free language. Assume it is. Let n be the integer of the pumping lemma. Select $z = a^n b^n c^n d^n$. Write z = uvwxy with $|vwx| \le n$. Then vx cannot contain both a's and c's nor can it contain both b's and d's. Thus uv^2wx^2y has an unequal number of a's and c's or an unequal number of b's and d's and is not in L, a contradiction. Therefore L is not a context-free language.

2. What is the specific class of languages defined by grammars in which each production is of one of the following forms:

A variable goes to epsilon $A \rightarrow \varepsilon$

A variable goes to a terminal $A \rightarrow a$

A variable goes to a string consisting of two terminals $A \rightarrow ab$

A variable goes to a string consisting of a terminal followed by a variable $A \rightarrow aB$

A variable goes to a string consisting of two terminals followed by a variable. $A \rightarrow abB$

Regular sets. Grammars with productions of the form $A \rightarrow aB$, $A \rightarrow a$, and $A \rightarrow \varepsilon$ can generate all and only regular sets. Productions of the form $A \rightarrow ab$ can be replaced by two productions of the forms $A \rightarrow aB$ and $B \rightarrow b$. Productions of the form $A \rightarrow abB$ can be replaced by introducing a new variable C and two productions $A \rightarrow aC$ and $C \rightarrow bB$.

3. Let $L \subseteq \{a,b\}^*$ be a context-free language and let Final(L)= $\{y \mid \exists x \ xy \in L\}$. Prove that Final(L) is a context-free language or that Final(L) is not a context-free language using closure properties that preserve context-free languages.

Final(L) is a context-free language. Let h_1 be the homomorphism

$$h_1(a) = a$$
 $h_1(b) = b$ $h_1(\hat{a}) = a$ $h_1(\hat{b}) = b$.

Let R be the regular set $(\hat{a}+\hat{b})^*(a+b)^*$ and let h_2 be the homomorphism

$$h_2(a) = a$$
 $h_2(b) = b$ $h_2(\hat{a}) = \varepsilon$ $h_1(\hat{b}) = \varepsilon$.

Then $Final(L) = h_2(h_1^{-1}(L) \cap R)$ and thus is context free since the class of context-free languages is closed under h, h^{-1} and intersection with regular sets.

4. Let $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ be a multi-state pushdown automaton that accepts by empty stack. Let $M' = (Q', \Sigma', \Gamma', \delta', q_0', Z_0', F')$ be the equivalent one state pushdown automaton. Specify Γ' and δ' precisely.

$$\Gamma' = Q \times \Gamma \times Q$$
.
Let $Q' = \{1\}$.

- a) $\delta'[1,a,[q,A,p]]$ contains [1,[r,B,s][s,C,p]] for each $s \in Q$ if $\delta(q,a,A)$ contains (r,BC).
- b) $\delta'[1,a,[q,A,p]]$ contains $(1,\mathcal{E})$ if $\delta(q,a,A)$ contains (p,\mathcal{E}) .