```
Notation
```

```
\varepsilon, \{\varepsilon\}, \Phi
L_1 \bullet L_2 = \{xy \mid x \in L_1 \ y \in L_2\}
L^* = \{\varepsilon\} \bigcup L \bigcup L^2 \bigcup L^3 \bigcup \cdots
2^S \quad \text{set of all subsets}
\{0^n 1 0^n 1 \mid n \ge 1\} \text{ and } \{0^n 1 0^n 1 \mid n \ge 1\}^*
```

Concepts

fa nfa e-nfa e-closure regular set regular expression induction definition of $h h^{-1}$ closure properties of regular sets Union, dot, star complement machine construction $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$ or cross product machine construction intersection $h h^{-1}$ reversal prove set not regular valid computation of fa

Constructions

cross product construction subset construction hat technique $h(h^{-1}(L) \cap R)$ nfa to fa subset construction fa to regular expression R_{ij}^k regular expression to fa valid computation of fa Write regular expression from English description often break string down into pieces pumping lemma minimization of states in fa

Examples

shuffle

Touched on

countably infinite noncountably infinite diagonalization there exist non regular sets

Context-free languages

context free grammar
pda
acceptance by empty store, final state
one state pda
all regular sets are context-free languages
The regular sets are properly contained in the class of context-free
languages, i.e. there exist context-free languages that are not regular

Examples of cfl's

$$\{a^i b^j \mid i \neq j\} = \{a^i b^j \mid i < j\} \cup \{a^i b^j \mid i > j\}$$
$$\{a^i b^j c^k \mid \text{either i} < j \text{ or j} < k\}$$

Constructions

empty store to final state final state to empty store cfg to empty store many state to one state one state to cfg

Normal forms

no useless variables if ε not in L(G) can eliminate ε -productions if ε in L(G) need $S \to \varepsilon$ eliminate unit productions Chomsky normal form $A \to BC$ $A \to b$

Pumping lemma

not cfl's
$$\{a^n b^n c^n \mid n \ge 1\}$$
 $\{a^i b^j c^k \mid i < j < k\}$

Closure properties

substitution implies union, concatenation, star, homomorphism reversal inverse homomorphism intersect with regular set

Not closed under

intersection complement

Decision algorithms

membership emptiness

Undecidable

equivalence equivalent to Σ^* emptiness of intersection

Efficient membership algorithm

Concepts

diagonalization recursive set recursively enumerable set decidable Turing machine computability

More powerful models

multi tape multi track nondeterministic

Weaker models

semi infinite tape two pushdown store 4-counter machine 2-counter machine $2^{i}2^{j}5^{k}7^{l}$

 L_D

halting problem

class of recursive sets closed under complement class of r.e. sets not closed under complement listing strings in r.e. set

If L and \overline{L} are both r.e. then L and \overline{L} are both recursive If L can be enumerated in order, then L is recursive

Can we enumerate names of all recursive sets? (Depends on definition of name.)

Rice's Theorem: Every nontrivial property on the r.e. sets is undecidable. concept of reduction

Decidability for cfl's

set of valid computations of Tm is intersection of two cfl's set of invalid computations is a clf

Undecidable

$$\begin{split} &L(G_1) \bigcap L(G_2) = \Phi \\ &L(G) = \Sigma^* \\ &L(G_1) = L(G_2) \quad equvilance \\ &L(G_1) \subseteq L(G_2) \\ &R \subseteq L(G) \end{split}$$

Rado's sigma function

 $\{M \mid L(M) \text{ infinite}\}\$ not r.e. and complement not r.e.

Every r.e. set is the homomorphic image of a recursive set

P and NP

complete problems for NP 3-CNF satisfiability clique Hamilton circuit