
SOLUTIONS    HW#4 
 
 
1. We can show that the right- linear grammar can be reduced at a strongly right- linear 
grammar. Then it is sufficient to prove that the strongly right- linear grammar generates 
the regular sets. The same thing happens also for the “left” grammars. 

 
 So it is sufficient to prove that given a strongly right- linear grammar G we can 
always construct an NFA: M = (Q, Σ, δ, s, F) such that L(M) = L(G). We define: 
 
Q = N∪{f}, where f is an accept state, and N is the set of nonterminals 
Σ is the set of terminals 
δ(A, x) = {B | AàxB ∈ P} 
δ(A, e) = {f | Aàe ∈ P} 
S = S 
F = {f} 
  
 The proof can be done by induction on the length of the derivation. 
 
 
2. (b) We have the CFG: SàaSa | aBa   BàbB | b 
 
Chomsky: 
SàAC | AD 
BàEB | b 
CàSA 
DàBA 
Eàb 
Aàa 
 
Greibach: 
SàaSA | aBA 
BàbB | b 
Aàa 
 
 
(d) We have the CFG: 
SàaSa | bSb | aSb | bSa| aCb | bCa | aDb | bDa | ab | ba 
CàaC | e 
DàbD |e 
 
Chomsky: 
SàAE1 | BE2 | AE2 | BE1 | AE3 | BE4 | AE5 | BE6 | AB |BA 
E1àSA 
E2àSB 
E3àCB 



E4àCA 
E2àDB 
E2àDA 
CàAC | a 
DàBD | b 
Aàa 
Bàb 
 
Greibach: 
Sà aSA | bSB | aSB | bSA | aCB | bCA | aDB | bDA | aB | bA 
CàaC | a 
DàbD | b 
Aàa 
Bàb 
 
 
3. A CFG that generates all strings with exactly twice as many a’s as b’s is: 
SàACB | ABC | bCC | e 
CàAS | bCCC 
BàACBB | ABAB | ABBC | bS 
Aàa 
 
 The proof that this CFG is correct can be done by induction. It is easy to see that 
S generates strings for which #a’s = 2#b’s, C generates strings for which #a’s = 2#b’s +1 
and B generates strings for which #a’s = 2#b’s -2. If we define f(x) = #a(x) – 2#b(x), then 
the graph of the function f(y) for all the prefixes of x will have jumps equal to either -2 or 
+1. This implies that we can get from a string for which the value of f is m to another one 
for which the value of f is n>m by going through all the intermediate values m+1, 
m+2,…, n-1. So we will have a concatenation of n-m strings for which the value of f is 
equal to 1. 
  
 Let us prove now the reverse implication. If x is a string for which #a’s = 2#b’s 
then its length must be multiple of 3. We will prove that it can be generated by induction 
on the number of a’s. Suppose we can generate all the sequences y for which f(y)∈{-2, 0, 
1} and contain less than or k a’s. We want to prove now that we can generate all the 
sequences with k+1 a’s for which f(x) )∈{-2, 0, 1}. If f(x)=0 and the x=bx1 then f(x1)=2. 
So from what we stated above, since f(e)=0, we can find two substrings x2 and x3 that 
concatenate to give x1 and f(xi)=1 for i=1,2. So we can get x using bCC, because we can 
generate xi from the induction hypothesis. Now if x=ax1 then f(x1)=-1. But we can write 
x1=x2x3 where x2 and x3 are two sequences with at most k a’s, one for which f is 1 and the 
other one for which the value of f is -2 also because of the fact that we could only have 
upward jumps equal to 1.  
 

Now we also have the other two situations. If f(x) = 1. If x=bx1 then f(x1)=3. So 
we could write x1 as a concatenation of 3 strings for which f is equal to 1. We are in the 



situation CàbCCC. If  x=ax1 then f(x1)=0 and x1 has at most k a’s so we can generate x1 
and we are in the situation Cà aS. 

 
If f(x)=-2 and x=bx1 then f(x1)=0 so we are in the situation described above and 

we know that we can generate x1. If x=ax1 then f(x1)=-3 then in order to get from e to x1, 
so for the value of the function f from 0 to -3 we need two down jumps and une up, 
which corresponds to one of the following possibilities: CBB, BCB, BBC and all are 
covered in our CFG and with the induction hypothesis. 

 
So we proved by induction that S generates all the sequences we need, but taking 

into account the strings generated by B and C. 
 
M = (Q, Σ, G, δ, s, ⊥ , F) 
Q = {p,q, f} 
Σ = {a, b} 
G = {+, -, ⊥} 
S = p 
F = {f} 
 
1. (p, a, ⊥)  (p,  -⊥) 
2. (p, a, -)  (p, --) 
3. (p, a, +)  (p, e) 
4. (p, b, ⊥)  (p, ++⊥) 
5. (p, b, -)  (q, e)      Go to state q to check for the next stack symbol. 
6. (p, b, +)  (p, +++) 
 
7. (q, e, ⊥)  (p, +)    Handle the extra + from the b that was just read. 
8. (q, e, -)  (p, e) 
 
9. (p, e, ⊥)  (f, ⊥)  Accept if the stack has no minuses. 
10. (p, e, +)  (f, +) 
 
Lemma: If the stack contents at a given step are the string a, then a is either +^n ⊥  or  
-^n ⊥ , where n≥0. 
Proof: Induction on the length of the derivation. Each transition preserves this rule. 
 
Lemma: Let a be the contents of the stack after reading input x and suppose that the 
NPDA is in state p. If a = +^n ⊥ , then 2#b(x) - #a(x) =n. If a = -^n ⊥ , then 2#b(x) - #a(x) 
=-n. 
Proof: Again use induction on the length of the derivation. Each transition preserves this 
rule. 
 
 Since the NPDA accepts exactly when the stack is of the form +^n ⊥  for some 
n≥0, we see from the two lemmas that it accepts exactly the given language! 
 

The strings in the examples are accepted, accepted, not accepted.  



 
 
4. We can prove by showing that there exists a PDA that accepts A∩R. Since A is CFL, 
there is a PDA that accepts A: M1 = (Q1, Σ, G1, δ1, s1, ⊥, F1). Since R is a regular set, 
there is a DFA that accepts R: M2 = (Q2, Σ, δ2, s2, F2). 
 
 We define the new PDA: M1 = (Q3, Σ, G3, δ3, s3, ⊥, F3) where: 
 
Q = Q1×Q2 
Σ is the same as above 
G3 = G1 since M2 does not have a stack 
s3 = (s1, s2) 
F3 = F1×F2  
δ3((p, q), a, A) = (δ1(p, a), δ2(q, a, A)) 
 
 It can be proved by induction that δ3((p, q), x, A) = (δ1(p, x), δ2(q, x, A)). The 
induction is after |x|. 
 
 Now we need L(M3) = A∩R.  
 
x∈ L(M3) ⇔  
δ3(s3, x, ⊥)∈(F3,G*) ⇔ 
(δ1(s1, x), δ2(s2, x, ⊥))∈( F1×F2, G*) ⇔ 
δ1(s1, x)∈F1, δ2(s2, x, ⊥)∈(F2,G*) ⇔ 
x∈L(R) and x∈L(A) ⇔ 
x∈L(R)∩L(A) = L(A∩R) 
 
 
5. We prove the problem by contradiction. Suppose L1 and L2 are two CFLs. From the 
previous problem, the intersection of a CFL and a regular set is a CFL. So if we find 
some L1, L2 CFLs and R a regular set such that (L1||L2)∩R is not CFL, then L1||L2 is not a 
CFL. 
 
 Let us choose: 
 
L1 = {anbn | n≥0} 
L2 = {ambm | m≥0} 
R=a*c*b*d* 
 
 L1 and L2 are CFLs and R is a regular set.  
L1||L2 = {x∈ (a*b*c*d*)* such that #a(x) = #b(x) and #c(x) = #d(x)} 
 

But (L1||L2)∩R = {ancmbndm | m, n ≥0} = A. This is not a CFL. This can be proved 
using pumping lemma. Say the demon picks k. You pick z = akckbkdk. Call each of the 
substrings ak, ck, bk, dk a block . z∈A and |z|≥k. Say the demon picks u, v, w, x, y such that 



z=uvwxy, vx ≠ e and |vwx|<k. No matter what the demon does, you can win by picking 
i=2.  

i. If one of v or x contains two different letters then uv2wx2y is not of the 
form a*c*b*d* 

ii. If v and x are from the same block then uv2wx2y has one block longer than 
the other three, so it is not in A. 

iii. If v and x are in different blocks, then the blocks must be adjacent, 
otherwise |vwx|>k. But in this case uv2wx2y does not have two pairs of 
blocks of equal length. 

 
This covers all the possibilities. So L1||L2 is not always a CFL. 

 
 


