Practice Set 2, for Quiz 2

Example 1. Find a Chomsky Normal Form of CFG $S \longrightarrow aXbY, X \longrightarrow aX \mid \epsilon, Y \longrightarrow bY \mid \epsilon$. Apply an algorithm from HO19.

Step 1: getting rid of ϵ .

$$S \longrightarrow aXbY \mid abY \mid aXb \mid ab, \quad X \longrightarrow aX \mid a, \quad Y \longrightarrow bY \mid b.$$

Step 2. Replacing terminals in nontrivial productions.

 $S \longrightarrow AXBY \mid ABY \mid AXB \mid AB, \quad X \longrightarrow AX \mid a, \quad Y \longrightarrow BY \mid b, \quad A \longrightarrow a, \quad B \longrightarrow b.$ Step 3. Shortening long productions by introducing extra nonterminals.

$$S \longrightarrow AU \mid AV \mid AW \mid AB, \quad U \longrightarrow XV, \quad V \longrightarrow BY, \quad W \longrightarrow XB, \quad X \to AX \mid a, \\ Y \to BY \mid b, \quad A \longrightarrow a, \quad B \longrightarrow b.$$

Example 2. Find a Greibach Normal Form of CFG $S \longrightarrow XbY$, $X \longrightarrow aX \mid a, Y \longrightarrow bY \mid a$. The general algorithm converting CFG into GNF is not practical. Use common sense and some tricks instead. The first steps are easy: get rid of ϵ and terminals other then the first ones in their productions:

$$S \longrightarrow XBY$$
, $X \longrightarrow aX \mid a$, $Y \longrightarrow bY \mid a$, $B \longrightarrow b$.

Trace the leftmost substitutions on nonterminals occurring first in productions until a terminal comes first:

$$S \xrightarrow{1} XBY \xrightarrow{1} aBY \xrightarrow{1} \dots$$

$$S \xrightarrow{1} XBY \xrightarrow{1} aXBY \xrightarrow{1} \dots$$

Replace old productions with first nonterminals by all possible productions obtained above:

$$S \longrightarrow aBY \mid aXBY, \, X \longrightarrow aX \mid a, \, Y \longrightarrow bY \mid a, \, B \longrightarrow b.$$

Example 3. Find a Greibach Normal Form of PAREN $-\{\epsilon\}$ (an old example in a new light). We start with the usual CFG $S \longrightarrow [S] \mid SS \mid [$]. Getting rid of non-first terminals gives

$$S \longrightarrow [SR \mid SS \mid [R, R \longrightarrow]].$$

Tracing the leftmost substitutions in $S \longrightarrow SS$:

$$S \xrightarrow{1} SS \xrightarrow{1} [SRS \dots]$$

$$S \xrightarrow{1} SS \xrightarrow{1} [RS \dots]$$

Replacing the old production by the results of the above tracing:

$$S \longrightarrow [R \mid [SR \mid [RS \mid [SRS, R \longrightarrow]]].$$

Example 4. Prove that $A = \{a^nb^na^n \mid n \geq 0\}$ is not a CFL (cf. Kozen, p.154, Ex. 22.3). Suppose A is a CFL. By the Pumping Lemma there should be an integer $k \geq 1$ such that any $z \in A$ can be broken into z = uvwxy, $|vx| \geq 1$, $|vwx| \leq k$ such that $uv^iwx^iy \in A$ for any $i \geq 0$. Take n > k and consider all possible partitions uvwxy of the string $a^nb^na^n$.

Case 1. Each of v, x is inside some block of letter. Note, that one of the blocks of letters remains v, x-free. Then uv^iwx^iy makes the blocks containing v, x larger, then the third block, therefore, $uv^iwx^iy \notin A$.

Case 2. At least one of v, x has intersections with two different blocks. Then either v or x contains both a's and b's and uv^iwx^iy for $i \geq 2$ is not of the form $a^mb^ma^m$ and, therefore, is not in A.

Example 5. Prove that $B = \{a^n b^n c^n \mid n \geq 0\}$ is not a CFL. A = h(B) where A in from Example 4, and h is homomorphism h(c) = a. Since CFLs are closed under homomorphisms, if B were context free, then A should be too, which is not the case.

Example 6. Assume that $C = \{a^mb^na^mb^n \mid m, n \geq 0\}$ is not a CFL (HW9, cf. Kozen, p.154, Example 22.4). Prove that $D = \{ww \mid w \in \{a,b\}^*\}$ is not a CFL. Use the theorem that intersection of a CFL with a regular language is a CFL. Note, that $C = D \cap a^*b^*a^*b^*$. If D were CFL, then C would be CFL too.

Example 7. Another example on the same lemma that CFL \cap REG=CFL. We establish that the set E of all strings over $\{a, b, c\}$ containing equal numbers of a, b and c is not a CFL. Note that $B = E \cap a^*b^*c^*$. Since the set $a^*b^*c^*$ is regular, if E were CFL, then B would be also a CFL, which contradicts Example 5.

Example 8. Convert an NPDA into a CFG. Let an NPDA M have the transition function $\delta(s, a, \bot) = (s, XX)$, $\delta(s, a, X) = (s, X)$, $\delta(s, b, X) = (t, \epsilon)$, $\delta(t, a, X) = (t, \epsilon)$. We first have to convert M into a one-state NPDA M'. Use the algorithm from HO24. The corresponding δ' is

$$\begin{array}{l} \delta'(*,a,) = (*,), \quad \delta'(*,a,) = (*,< tXs>) \\ \delta'(*,a,) = (*,), \quad \delta'(*,a,) = (*,< tXt>), \\ \delta'(*,a,) = (*,), \quad \delta'(*,a,) = (*,), \\ \delta'(*,b,) = (*,), \\ \delta'(*,b,) = (*,), \\ \delta'(*,a,) = (*,), \\ \delta'(*,a,<(tXt>)) = (*,<$$

Tracing for M on the input aaba:

$$(s,aaba,\bot) \stackrel{1}{\longrightarrow} (s,aba,XX) \stackrel{1}{\longrightarrow} (s,ba,XX) \stackrel{1}{\longrightarrow} (t,a,X) \stackrel{1}{\longrightarrow} (t,\epsilon,\epsilon)$$

The corresponding tracing for M' is:

$$(*, aaba, \langle s \bot t \rangle \xrightarrow{1} (*, aba, \langle sXt \rangle \langle tXt \rangle) \xrightarrow{1} (*, ba, \langle sXt \rangle \langle tXt \rangle) \xrightarrow{1} (*, a, \langle tXt \rangle) \xrightarrow{1} (*, \epsilon, \epsilon)$$

From M' we read the grammar G

$$\begin{array}{l} ~~\longrightarrow a < sXs> < sXs>, \qquad ~~\longrightarrow a < sXt> < tXs> \\ ~~\longrightarrow a < sXt> < sXt>, \qquad ~~\longrightarrow a < sXt> < tXt>, \\ \longrightarrow a < sXs>), \qquad \longrightarrow a < sXt>, \\ \longrightarrow b, \qquad \longrightarrow a. \end{array}~~~~~~~~$$

Here is how G generates the string aaba from the initial nonterminal $< s \perp t >$:

$$< s \perp t > \xrightarrow{1} a < sXt > < tXt > \xrightarrow{1} aa < sXt > < tXt > \xrightarrow{1} aab < tXt > \xrightarrow{1} aaba.$$

Note that M' contains many redundancies. After pruning transitions that never apply in accepting computations, we get much shorter NPDA:

$$\delta'(*,a,<\!s\bot t\!>) = (*,<\!sXt\!><\!tXt\!>), \quad \delta'(*,a,<\!sXt\!>) = (*,<\!sXt\!>), \\ \delta'(*,b,<\!sXt\!>) = (*,<\!bXt\!>), \quad \delta'(*,a,<\!tXt\!>) = (*,\epsilon).$$

The same holds for the grammar. Here is a short equivalent of G:

$$\langle s \perp t \rangle \longrightarrow a \langle sXt \rangle \langle tXt \rangle, \quad \langle sXt \rangle \longrightarrow a \langle sXt \rangle, \quad \langle sXt \rangle \longrightarrow b, \quad \langle tXt \rangle \longrightarrow a.$$

Replace awkward notation of nonterminals by the usual upper case Latin letters:

$$S \longrightarrow aVW, V \longrightarrow aV \mid b, W \longrightarrow a.$$

Abandon Greibach Normal Forms and get a shorter CFG:

$$S \longrightarrow aVa, \quad V \longrightarrow aV \mid b.$$

A direct analysis of derivations allows us to come with yet shorter version:

$$S \longrightarrow aS \mid aba.$$