CS 381 Homework 6 solutions

October 26, 2000

Problem 15.1 $[\epsilon], [a], [aa], [b] \equiv_R [bx] \equiv_R [aax], [ab] \equiv_R [abx]$

	a	b
$\rightarrow [\epsilon]$	[a]	D
$[a]\mathrm{F}$	[aa]	[ab]
$[aa]\mathrm{F}$	D	D
$[ab]\mathrm{F}$	D	[ab]
D	D	D

Problem 15.2

- a) $[\epsilon]$, [01], [1], $\forall k > 0$ $[0^k]$ and $[0^{k+1}1]$
- b) The relationship \equiv_R is of infinite index.
- c) $[\epsilon], \forall k > 0 \ [0^k], [1^k].$

Problem 16.1

 $\{x \in a^* | \text{length is divisible by 2 or 7} \}$ and $\{x \in \{0,1\}^* | \#0(x) \text{ is even and } \#1(x) \text{ is divisible by 3} \}$ There are many correct answers. Here is one for each of the problems.

	-	a	\dashv	$\operatorname{comment}$		•				
s	(s,R)	(q_0, R)	(t,L)	$\#a \mod 2 = 0$						
q_0	- (D)	(s,R)	$(u,\! { m L})$	$\#a \mod 2 = 1$		 	0	1	\dashv	comment
u	$(p_0,\! m R)$	(u,L)	- (. . .	move to start	\overline{s}	(s,R)	(q_1,R)	(s,R)	(p_0, L)	$\#0 \mod 2 = 0$
p_0	=	(p_1, \mathbf{R})	(t,L)	$\#a \bmod 7 = 0$	q_1	-	(s,R)	(q_1,R)	(r,L)	$\#0 \mod 2 = 1$
p_1	-	(p_2,R)	(r,L)	$\# a \mod 7 = 1$	p_0	(t,R)	(p_0, L)	(p_1, L)	-	$\#1 \mod 3 = 0$
p_2	-	(p_3,R)	$(r,\! m L)$	$\#a \mod 7 = 2$	p_1	(r,R)	(p_1, L)	(p_2, L)	_	$#1 \mod 3 = 1$
p_3	-	(p_4,R)	$(r,\! m L)$	$\#a \mod 7 = 3$	p_2	(r,\mathbf{R})	(p_1, \mathbb{L}) (p_2, \mathbb{L})	(p_0, L)	_	$#1 \mod 3 = 2$
p_4	-	(p_5, R)	$(r,\! m L)$	$\#a \mod 7 = 4$	P^{2}	[(' ;±0)	(p_2,\mathbf{L})	(P_0, \mathbf{L})		$\int \pi^{1} \operatorname{mod} \theta = 2$
p_5	-	(p_6, R)	$(r,\! m L)$	$\#a \mod 7 = 5$						
p_6	=	(p_0,R)	$(r,\! m L)$	$\#a \mod 7 = 6$						

Problem 17.1

- a) not derivable because an a must follow every b.
- b) $S \to AB \to AbA \to Aba \to aAba \to aaAba \to aaaAba \to aaaaba$
- c) cannot derive bb because all b's must have an a immediately after them.
- d) $S \to ABS \to ABAB \to ABAbA \to ABAba \to ABaba \to AbAaba \to Abaaba \to abaaba$

Problem 17.2

$$\begin{split} S &\to aAB|aBA|bAA|\epsilon \\ A &\to aS|bAAA \\ B &\to aABB|aBAB|aBBA|bS \end{split}$$

Prove that L(G) is the language of all strings consisting of twice as many b's as a's. We will show this in two parts: first, we show that any string $x \in L(G)$ has twice as many a's as b's.

We wish to show inductively that the non-terminal S produces a string with #a(S) = 2#b(S), and we will need to show that A produces a string with #a(A) = 2#b(A) + 1, and B produces a string with #a(B) = 2#b(B) - 2.

The induction here is on the structure of a derivation: for any string $x \in L(G)$, there is a derivation $S \to^* x$. At each step, the length of string produced by a non-terminal on the right side of a rule is smaller than the length produced by the non-terminal on the left. Thus our induction will terminate when we have a string of length 0 to produce (which is the base case).

Base cases:

- $S \to \epsilon$. Clearly the length of derivation here is one, and $\#a(\epsilon) = 2\#b(\epsilon) = 0$.
- $A \to aS \to a$. #a(a) = 1 = 2#b(a) + 1.
- $B \to bS \to b$. #a(b) = 0 = 2#b(b) 2.

So we have base cases for each of the three non-terminals.

Inductive steps: We inductively assume that #a(S) = 2#b(S), #a(A) = 2#b(A) + 1, and #a(B) = 2#b(B) - 2.

- $S' \to aAB$: We need to show that #a(S') = 2#b(S'), using inductive knowledge about A and B. So: #a(S') = 1 + #a(A) + #a(B) = 1 + [2#b(A) + 1] + [2#b(B) 2] = 2[#b(A) + #b(B)] = 2#b(S').
- $S' \to aBA$: same as above, by transitivity.
- $S' \to bAA$: 2#b(S') = 2 + 2[2#b(A)] = 2 + 2[#a(A) 1] = 2#a(A) = #a(S').
- $A' \to aS$: #a(A') = 1 + #a(S) = 1 + 2#b(S) = 1 + 2#b(A').
- $A' \to bAAA$: 2#b(A') = 2 + 3[2#b(A)] = 2 + 3[#a(A) 1] = 3#a(A) 1 = #a(A') 1.
- $B' \to aABB$: #a(B') = 1 + #a(A) + 2#a(B) = 1 + [2#b(A) + 1] + 2[2#b(B) 2] = 2#b(A) + 2[2#b(B) + 1 + 1 4 = 2[#b(A) + 2#b(B)] 2 = 2#b(B') 2.
- $B' \to aBAB$: same as above by transitivity.
- $B' \to aBBA$: same as above by transitivity.
- $B' \to bS$: 2#b(B') = 2 + 2#b(S) = 2 + #a(S) = 2 + #a(B').

Part two is to show that any string x with #a(x) = 2#b(x) can be derived by $S \to^* x$. We'll show this inductively with 3 simultaneous inductive hypotheses: if #a(x) = 2#b(x) then $s \to^* x$, if #a(x) = 2#b(x) + 1 then $A \to^* x$, and if #a(x) = 2#b(x) - 2 then $B \to^* x$.

Base cases: ϵ has $\#a(\epsilon)=2\#b(\epsilon)$, and $S\to\epsilon$. a has #a(a)=2#b(a)+1 and $A\to aS\to a$. Similarly for b.

Inductive cases: Assume that for any string x with $|x| \le n$ (where n = 3k for some integer k) the S hypothesis holds, and with $|x| \le n + 1$ the A and B hypotheses hold. Now we consider a string x with |x| = n + 3, and #a(x) = 2#b(x). We have several cases to consider:

- x = ayz, where y and z are non-empty strings with #a(y) = 2#b(y) + 1 and #a(z) = 2#b(z) 2. Then we use the production $S \to aAB$, and our inductive hypotheses give us $A \to^* y$ and $B \to^* z$.
- x = azy, where y and z have the same conditions as above. In this case, we use the production $S \to aBA$, and our inductive hypotheses work as before. (Note that since #a(y) + #a(z) = 2#b(y) + 2#b(z) 1, so those are the only 2 cases with x beginning with a.)
- x = byz with #a(y) = 2#b(y) + 1 and #a(z) = 2#b(z) + 1. In this case we have $S \to bAA$, and our inductive hypothesis gives us $A \to^* y$ and $A \to^* z$. (Note that this is the only case for x beginning with b because #a(y) + #a(z) = 2#b(y) + 2#b(z) + 2.)

We also must consider the cases for x, |x| = n + 4 and either #a(x) = 2#b(x) + 1 or #a(x) = 2#b(x) - 2. These cases are similar to the above, with a few more possibilities for substrings, each corresponding to one rule in the grammar.