CS 381 Homework 6 solutions

October 26, 2000

Problem 15.1 [€], [a], [aa], [b)] =R [bz] =R [aaz], [ab] =R [abz]

a b

— e | [a] D
[a]F | [aa]  [ad]

[@aa]F | D D
[ab]F | D [ab]

D D D

Problem 15.2

a) [e], [01],[1], V& > 0 [0%] and [0F+11]
b) The relationship =g is of infinite index.

¢) [e], Yk > 0 [0*], [1%].

Problem 16.1

{z € a*|length is divisible by 2 or 7} and {z € {0,1}*|#0(x) is even and #1(x) is divisible by 3}
There are many correct answers. Here is one for each of the problems.

F a B comment

s | (s,R) (@,R) (L) | #amod2=0
o - (s,R) (uw,L) | #amod2=1
u | (po,R) (uwL) - move to start

Po - (p1,R) (tL) | #amod 7 =0
P - (p2,R) (r,L) | #amod 7 =1
P2 - (ps,R) (r,L) | #amod 7 = 2
p3 - (ps,,R) (r,L) | #amod 7 =3
yz - (ps,R) (r,L) | #amod 7 =4
Ps - (ps,R) (r,.L) | #amod 7 =5
Ds - (po,R) (r,L) | #amod 7 =6

Problem 17.1

a) not derivable because an a must follow every b.
S = AB - AbA — Aba — aAba — aaAba — aaaAba — aaaaba

F 0 1 - comment
s (55R) (QIJR) (SaR) (pOJL) #0 mod 2 =0
@ - (s,R) (@1, R) (r,.L) | #0mod 2 =1
po | &R)  (po,L)  (p1,L) - | #lmod3=0
p | (mR)  (p,L)  (p2,L) - #1lmod3 =1
p2 | (mR)  (p2,L)  (po,L) - #1 mod 3 = 2

b)
¢) cannot derive bb because all b’s must have an a immediately after them.
d) S — ABS - ABAB — ABAbA — ABAba — ABaba — AbAaba — Abaaba — abaaba

Problem 17.2

S — aAB|aBA|bAAle
A — aS|bAAA
B — aABB|aBAB|aBBA|bS



Prove that L(G) is the language of all strings consisting of twice as many b’s as a’s. We will show this in
two parts: first, we show that any string z € L(G) has twice as many a’s as b’s.

We wish to show inductively that the non-terminal S produces a string with #a(S) = 2#b(S), and
we will need to show that A produces a string with #a(A) = 2#b(A) + 1, and B produces a string with
#a(B) = 2#b(B) — 2.

The induction here is on the structure of a derivation: for any string x € L(G), there is a derivation
S —* x. At each step, the length of string produced by a non-terminal on the right side of a rule is smaller
than the length produced by the non-terminal on the left. Thus our induction will terminate when we have
a string of length 0 to produce (which is the base case).

Base cases:

e S — €. Clearly the length of derivation here is one, and #a(e) = 2#b(e) = 0.
e A—aS —a. #a(a) =1=24b(a) + 1.
¢ B — bS —b. #a(b) =0 =2#b(b) — 2.

So we have base cases for each of the three non-terminals.
Inductive steps: We inductively assume that #a(S) = 2#b(S), #a(A) = 2#b(A) + 1, and #a(B) =
24b(B) — 2.

o S' > aAB: We need to show that #a(S") = 2#b(S’), using inductive knowledge about A and B. So:
#a(S") =1+ #a(A) + #a(B) = 1 + [2#b(A) + 1] + [2#b(B) — 2] = 2[#b(A) + #b(B)] = 2#b(S5").

e S’ = aBA: same as above, by transitivity.

o ' — bAA: 2#b(S") = 2 + 2[2#b(A)] = 2 + 2[#a(A) — 1] = 2#a(A) = #a(S").

o A' = aS: #a(A) =1+ #a(S) = 1+ 2#b(S) = 1 + 2#b(A").

o A" bAAA: 2#b(A") = 2 + 3[2#b(A)] = 2 + 3[#a(A) — 1] = 3#a(4) — 1 = #a(4") — 1.

o B' - aABB: #a(B') = 1 + #a(A) + 2#a(B) = 1 + [2#b(A) + 1] + 22#b(B) — 2] = 2#b(A) +
22#b(B) + 1+ 1 — 4 = 2[#b(A) + 2#b(B)] — 2 = 24#b(B') — 2.

e B' — aBAB: same as above by transitivity.
e B' —» aBBA: same as above by transitivity.
e B' — bS: 2#b(B') =2+ 2#b(S) = 2 + #a(S) = 2+ #a(B').

Part two is to show that any string x with #a(z) = 2#b(x) can be derived by S —* x. We’ll show this
inductively with 3 simultaneous inductive hypotheses: if #a(x) = 2#b(z) then s =* z, if #a(z) = 2#b(x)+1
then A —* z, and if #a(x) = 2#b(z) — 2 then B —* z.

Base cases: € has #a(e) = 2#b(e), and S — €. a has #a(a) = 2#b(a) + 1 and A — aS — a. Similarly
for b.

Inductive cases: Assume that for any string z with |z| < n (where n = 3k for some integer k) the S
hypothesis holds, and with |z| < n + 1 the A and B hypotheses hold. Now we consider a string = with
|z| =n + 3, and #a(z) = 2#b(x). We have several cases to consider:

e © = ayz, where y and z are non-empty strings with #a(y) = 2#b(y) + 1 and #a(z) = 2#b(z) — 2.
Then we use the production S — aAB, and our inductive hypotheses give us A —* y and B —* 2.

e © = azy, where y and 2z have the same conditions as above. In this case, we use the production
S — aBA, and our inductive hypotheses work as before. (Note that since #a(y) + #a(z) = 2#b(y) +
24#b(z) — 1, so those are the only 2 cases with z beginning with a.)

e z = byz with #a(y) = 2#b(y) + 1 and #a(z) = 2#b(z) + 1. In this case we have S — bAA, and our
inductive hypothesis gives us A —* y and A —* 2. (Note that this is the only case for z beginning
with b because #a(y) + #a(z) = 2#b(y) + 2#b(2) + 2.)



We also must consider the cases for z, |x| = n+4 and either #a(z) = 2#b(z) +1 or #a(z) = 2#b(z) — 2.
These cases are similar to the above, with a few more possibilities for substrings, each corresponding to one
rule in the grammar.



