- 1. Reading: D. Kozen Automata and Computability, lecture 36
- 2. The main message of this lecture:

Like finite or push-down automata, Turing machines have equivalent generational counterparts: type 0 grammars, Post systems. A very different axiomatic approach is realized in μ -recursivity. These (and all other) reasonable attempts to define computability led to the same class of computable functions.

Definition 33.1. Type θ grammars (or unrestricted grammars) are similar to context-free grammars but with productions of a more general form $\alpha \longrightarrow \beta$, where α, β are arbitrary strings of terminals and nonterminals, α containing at least one nonterminal.

Example 33.2. A type 0 grammar generating the language $\{a^n b^n c^n \mid n \geq 1\}$. Productions:

$$S \longrightarrow aSBC \mid aBC, \quad CB \longrightarrow BC, \quad aB \longrightarrow ab, \quad bB \longrightarrow bb, \quad bC \longrightarrow bc, \quad cC \longrightarrow cc$$

A derivation of $aabbcc: S \xrightarrow{1} aSBC \xrightarrow{1} aaBCBC \xrightarrow{1} aaBBCC \xrightarrow{1} aabBCC \xrightarrow{*} aabbcc.$ A derivation of $a^nb^nc^n: S \xrightarrow{*} a^{n-1}S(BC)^{n-1} \xrightarrow{1} a^n(BC)^n \xrightarrow{*} a^nB^nC^n \xrightarrow{*} a^nb^nc^n.$ (We leave this an an exercise to show that all generated terminal strings are of the form $a^nb^nc^n$).

Theorem 33.3. Type 0 grammars generate exactly r.e. languages.

The proof is too long for our course. The main ideas are the following. By the Church Thesis, any type 0 grammar computation can be emulated by a Turing Machine, therefore, all type 0 languages are r.e. Conversely, type 0 grammars can encode configurations of Turing Machines.

In devising a grammar to generate a given language, we may have to be tricky. A more convenient (but not more general!) programming tool is provided by so-called *Post systems* which, like grammars, substitute strings by strings, but use *variables* to denote unspecified substrings. For example, in elementary algebra a common operation is to replace the string (a - b)(a + b) whenever it occurs by the string $(a^2 - b^2)$. This string manipulation may be denoted by writing $X(a - b)(a + b)Y \longrightarrow X(a^2 - b^2)Y$.

Definition 33.4. A Post system consists of disjoint finite sets of nonterminals (N) terminals (Σ) and variables (V), a start symbol $S \in N$, and a finite set of *Post productions* of the form

$$u_0X_1u_1X_2u_2\ldots X_nu_n \longrightarrow w_0X_{i_1}w_1X_{i_2}w_2\ldots X_{i_m}w_m$$
, where

- a) $u_0, u_1, \ldots, u_n, w_0, w_1, \ldots, w_m \in (N \cup \Sigma)^*$,
- b) X_1, X_2, \ldots, X_n are variables ranging over $(N \cup \Sigma)^*$,
- c) the subscripts i_1, i_2, \ldots, i_m are all from $1, 2, \ldots, n$ and need not be distinct.

This production applied to $u_0x_1u_1x_2u_2...x_nu_n \in (N \cup \Sigma)^*$ produces $w_0x_{i_1}w_1x_{i_2}w_2...x_{i_m}w_m$.

Example 33.5. A Post system generating $\{a^nb^nc^n \mid n \geq 0\}$: $\Sigma = \{a,b,c\}$, $N = \{S,\sharp\}$, $V = \{X,Y,Z\}$, productions $S \longrightarrow \sharp\sharp$, $X\sharp Y\sharp Z \longrightarrow aX\sharp bY\sharp cZ \mid XYZ$. A derivation of $a^nb^nc^n$: $S \stackrel{1}{\longrightarrow} \sharp\sharp \stackrel{1}{\longrightarrow} a\sharp b\sharp c \stackrel{*}{\longrightarrow} a^n\sharp b^n\sharp c^n \stackrel{1}{\longrightarrow} a^nb^nc^n$. It is also clear that all derived terminal strings are on the form $a^nb^nc^n$. Indeed, an easy induction on the derivation length shows that in any derivation all strings other than the first S and the last one are of the form $a^n\sharp b^n\sharp c^n$. The last production of the derivation strips \sharp 's.

Example 33.6. A Post system computing the function $f(n) = n^2$, represented by the set of strings $1^n \cdot 1^{n^2}$: $\Sigma = \{1, \cdot\}, N = \{S\}$, variables X, Y, productions $S \longrightarrow \cdot$, $X \cdot Y \longrightarrow X1 \cdot Y \cdot XX1$. Deriving $3^2 = 9$: $S \xrightarrow{1} \cdot \xrightarrow{1} 1 \cdot 1 \xrightarrow{1} 11 \cdot 1111 \xrightarrow{1} 111 \cdot 111111111$.

The correctness of the algorithm is justified by the formulas $0^2 = 0$, $(n+1)^2 = n^2 + 2n + 1$.

The type 0 grammars may be regarded as special case of Post systems. Indeed, the result of applying a type 0 production $\alpha \longrightarrow \beta$ to a string $u = x\alpha y \in (\Sigma \cup N)^*$ is $x\beta y$ which is equal to the result of applying a Post production $X\alpha Y \longrightarrow X\beta Y$ to the same string u.

Theorem 33.7. Post systems generate r.e. sets and only them.

Definition 33.8. Let $\vec{u} = u_1 \dots, u_n$. Primitive recursion takes two functions $h(\vec{u}), g(x, y, \vec{u})$ and produces $f(x, \vec{u})$ such that $f(0, \vec{u}) = h(\vec{u}), f(x+1, \vec{u}) = g(x, f(x, \vec{u}), \vec{u})$. Minimization takes a (possibly partial) function $g(y, \vec{u})$ and produces $f(\vec{u}) = \mu y.(g(y, \vec{u}) = 0)$ which equals to the least value y such that $g(0, \vec{u}), g(1, \vec{u}), \dots, g(y-1, \vec{u})$ are all defined and $g(y, \vec{u}) = 0$ if such a y exists and undefined otherwise. μ -recursive functions are obtained from the original set of functions $\mathbf{s}(x) = x + 1$ (successor), $\mathbf{z}(x) = 0$ (zero), $\pi_i^n(x_1, \dots, x_n) = x_i, 1 \le i \le n$ (projections) by compositions, primitive recursions and minimizations. Functions generated without minimization are called primitive recursive (p.r.). Note, that p.r. functions are total.

Example 33.9. Addition f(x, u) = u + x is primitive recursive. Indeed, take $h(u) = \pi_1^1(u) = u$, $g(x, y, u) = \mathbf{s}(y) = y + 1$. Then u + 0 = u, u + (x + 1) = (u + x) + 1, which provides a classical definition of addition. Likewise, multiplication $u \cdot x$ is defined by $u \cdot 0 = 0$, $u \cdot (x + 1) = u \cdot x + u$. Here $h(u) = \mathbf{z}(u) = 0$, g(x, y, u) = y + u, therefore multiplication is also p.r. More examples of p.r. functions: the predecessor x - 1 defined by 0 - 1 = 0, (x + 1) - 1 = x; proper subtraction u - x defined by u - 0 = u, u - (x + 1) = (u - x) - 1. Here is a μ -recursive function which is not p.r. (why?): $f(x) = \mu y \cdot (x + y = 0)$; note, that f(0) = 0 and f(x) is undefined for all $x \ge 1$.

Theorem 33.10. μ -recursive functions = Turing computable functions.

HW Problem 33.1. Build a type 0 grammar for $\{ww \mid w \in \{a,b\}\}\$

HW Problem 33.2. Give a Post system for $f(n) = 3^n$.

HW Problem 33.3. Prove that the function f such that f(n) = n for $n \ge 3$ and undefined for n = 0, 1, 2 is μ -recursive.