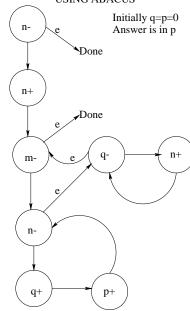
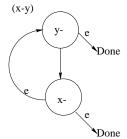
CS 381 Fall 2000 Solutions to Homework 1

Handout #1

MULTIPLYING 2 NUMBERS (m*n) USING ABACUS



SUBTRACTION OF 2 MUMBERS



Answer is in x. If the original values of x and y are needed, then use 2 more boxes.

Handout #2

Problem 1

Proof of $\emptyset^+ = \emptyset$: Claim $\emptyset^i = \emptyset \ \forall i \geq 1$. This is obviously true for i = 1. Assume this is true for $i \leq n$. Consider i = n + 1. By definition $\emptyset^{n+1} = \emptyset \ \emptyset^n = \emptyset \ \emptyset$ (by induction hypothesis) $= \emptyset$. Hence it is true for all i.

Now, by definition $\emptyset^+ = \bigcup_{i \geq 1} \emptyset^i$. The RHS consists of only empty sets and union of countably finite empty sets is empty. Hence $\emptyset^+ = \emptyset$.

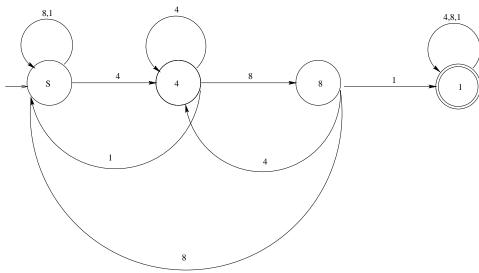
By definition, $\emptyset^* = \emptyset^0 \bigcup \emptyset^+ = \emptyset^0$ (from the previous proof), But by definition $\emptyset^0 = \{\epsilon\}$. Therefore $\emptyset^* = \{\epsilon\}$.

- a) YES
- b) YES
- c) NO
- d) YES
- e) YES
- f) NO

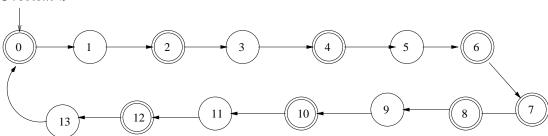
Problem 2

- a) $(A \bigcup B)^*$
- b) $(AB)^*$
- c) A^*B^*
- d) $\bigcup_{i\geq 0} A^i B^i$

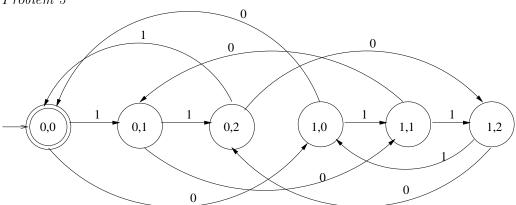
Handout #3 Problem 1



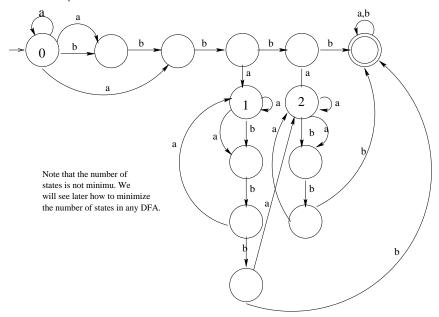
$Problem \ 2$



$Problem \ 3$



Problem 4



$Problem\ 5$

