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1. Motivation: Bayes Optimal Classifier

e Recall: Bayes Optimal classifier predicts arg max, P(y|x)
e Goal: Can we estimate P(X,Y) directly from training data?
e Two approaches:

= (Generative learning: Estimate P(X,Y) = P(X|Y)P(Y)

= Discriminative learning: Estimate P(Y|X) directly

e How can we estimate probability distributions from samples?
e Example: Tossing a possibly biased coin.



2. Maximum Likelihood Estimation (MLE)

e Two-step procedure:

1. Make assumption about distribution of data P(D;#)
2. Set parameters 0 to maximize likelihood of observed data

e MLE Principle: Find 8 to maximize likelihood

GMLE — arg meax P(D, 9)

e Example: binomial distribution models n independent Bernoulli trials
with probability 6
ng + nr

ng

P(D;0) = o™ (1 — §)™
(")



3. MLE Derivation

e General procedure: To solve for 8.5

1. Plug data into distribution and take logarithm: log P(D; 6)
2. Take the derivative and set it to zero

e Question: What is the MLE derivation for the coin toss with a
binomial distribution?

e Pros: If nis large and model is correct, finds true parameters
e Cons: Can overfit when n is small and can be wrong if model is
Incorrect



4. Incorporating Prior Knowledge

e ldea: Add imaginary data that mirrors our prior knowledge

= Example: mgy imaginary heads and my imaginary tails
A ng + Mg

ng + Ny +mg + mr
e Bayesian Formalization: Model 6 as a random variable with
prior distribution P(6)
e Bayes Rule:

P(0| D) =

e Components:

= P(6): prior distribution (before seeing data)
= P(D | 0): likelihood of data
= P(6 | D): posterior distribution (after seeing data)



5. Maximum a Posteriori (MAP)

Two-step procedure:

1. Make assumption about distribution of data and the distribution of 6
2. Set parameters to maximize likelihood of observed data and parameters

MAP Principle: Choose most likely 8 given data and prior distribution

Oyap = argmax P(6 | D)
0

= argmax log P(D|0) + log P(0)
0

Example: Beta distribution as a coin prior
6>-1(1 — 9)P1
B(e, B)
Question: What is the MAP derivation for the coin toss with a binomial
distribution and a beta prior? How does it relate to "imaginary" data?




6. MLE and MAP Summary

Given training data D, parameters 6, test point x;:
MLE: e Prediction: P(y | x¢;0)
e Learning: # = argmaxy P(D;0)
e §is a model parameter
e Works if n is large enough and model is correct

MAP: e Prediction: P(y | x¢,0)
e Learning: 8 = argmaxy, P(0 | D) < P(D | 8)P(6)
e §is arandom variable
* log[P(0)] penalizes deviating from prior belief
e Can work for smaller n if the prior is correct (and the model)

Convergence: As n — oo, Oyrap — OuvrEs



7. Estimating Distributions for ML
e Training data: D = (x1,¥1),-- -, (Xn,¥,) drawn i.i.d. from P(X,Y)
e Joint distribution:
= P(x,y) =
e Marginal distributions:
= P(y) =
" P(x) =
e Conditional distributions:
= P(x]y) =
= P(ylx) =



