

Estimating Probabilities from Data

Cornell CS 3/5780 · Spring 2026

1. Motivation: Bayes Optimal Classifier

- **Recall:** Bayes Optimal classifier predicts $\arg \max_y P(y|\mathbf{x})$
- **Goal:** Can we estimate $P(X, Y)$ directly from training data?
- **Two approaches:**
 - Generative learning: Estimate $P(X, Y) = P(X|Y)P(Y)$
 - Discriminative learning: Estimate $P(Y|X)$ directly
- How can we estimate probability distributions from samples?
- **Example:** Tossing a possibly biased coin.

2. Maximum Likelihood Estimation (MLE)

- **Two-step procedure:**

1. Make assumption about distribution of data $P(D; \theta)$
2. Set parameters θ to maximize likelihood of observed data

- **MLE Principle:** Find $\hat{\theta}$ to maximize likelihood

$$\hat{\theta}_{MLE} = \arg \max_{\theta} P(D; \theta)$$

- **Example:** binomial distribution models n independent Bernoulli trials with probability θ

$$P(D; \theta) = \binom{n_H + n_T}{n_H} \theta^{n_H} (1 - \theta)^{n_T}$$

3. MLE Derivation

- **General procedure:** To solve for $\hat{\theta}_{MLE}$
 1. Plug data into distribution and take logarithm: $\log P(D; \theta)$
 2. Take the derivative and set it to zero
- **Question:** What is the MLE derivation for the coin toss with a binomial distribution?

- **Pros:** If n is large and model is correct, finds *true* parameters
- **Cons:** Can overfit when n is small and can be wrong if model is incorrect

4. Incorporating Prior Knowledge

- **Idea:** Add imaginary data that mirrors our prior knowledge

- Example: m_H imaginary heads and m_T imaginary tails

$$\hat{\theta} = \frac{n_H + m_H}{n_H + n_T + m_H + m_T}$$

- **Bayesian Formalization:** Model θ as a *random variable* with *prior* distribution $P(\theta)$

- **Bayes Rule:**

$$P(\theta | D) = \frac{P(D | \theta)P(\theta)}{P(D)}$$

- **Components:**

- $P(\theta)$: *prior* distribution (before seeing data)
 - $P(D | \theta)$: *likelihood* of data
 - $P(\theta | D)$: *posterior* distribution (after seeing data)

5. Maximum a Posteriori (MAP)

- **Two-step procedure:**
 1. Make assumption about distribution of data *and the distribution of θ*
 2. Set parameters to maximize likelihood of observed data *and parameters*
- **MAP Principle:** Choose most likely θ given data *and prior distribution*

$$\hat{\theta}_{MAP} = \operatorname{argmax}_{\theta} P(\theta | D)$$

$$= \operatorname{argmax}_{\theta} \log P(D|\theta) + \log P(\theta)$$

- **Example:** Beta distribution as a coin prior

$$P(\theta) = \frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{B(\alpha, \beta)}$$

- **Question:** What is the MAP derivation for the coin toss with a binomial distribution and a beta prior? How does it relate to "imaginary" data?

6. MLE and MAP Summary

Given training data D , parameters θ , test point x_t :

MLE:

- Prediction: $P(y | x_t; \theta)$
- Learning: $\theta = \operatorname{argmax}_{\theta} P(D; \theta)$
- θ is a model parameter
- Works if n is large enough and model is correct

MAP:

- Prediction: $P(y | x_t, \theta)$
- Learning: $\theta = \operatorname{argmax}_{\theta} P(\theta | D) \propto P(D | \theta)P(\theta)$
- θ is a random variable
- $\log[P(\theta)]$ penalizes deviating from prior belief
- Can work for smaller n if the prior is correct (and the model)

Convergence: As $n \rightarrow \infty$, $\hat{\theta}_{MAP} \rightarrow \hat{\theta}_{MLE}$

7. Estimating Distributions for ML

- Training data: $D = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ drawn i.i.d. from $P(X, Y)$
- Joint distribution:
 - $\hat{P}(\mathbf{x}, y) =$
- Marginal distributions:
 - $\hat{P}(y) =$
 - $\hat{P}(\mathbf{x}) =$
- Conditional distributions:
 - $\hat{P}(\mathbf{x}|y) =$
 - $\hat{P}(y|\mathbf{x}) =$