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1. Motivation: Bayes Optimal Classifier
Recall: Bayes Optimal classifier predicts 
Goal: Can we estimate  directly from training data?
Two approaches:

Generative learning: Estimate 
Discriminative learning: Estimate  directly

How can we estimate probability distributions from samples?
Example: Tossing a possibly biased coin.

argmax P (y∣x)y

P (X,Y )

P (X,Y ) = P (X∣Y )P (Y )
P (Y ∣X)
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2. Maximum Likelihood Estimation (MLE)
Two-step procedure:
1. Make assumption about distribution of data 
2. Set parameters  to maximize likelihood of observed data

MLE Principle: Find  to maximize likelihood

Example: binomial distribution models  independent Bernoulli trials
with probability 

P (D; θ)
θ

θ̂

=θ̂MLE arg P (D; θ)
θ
max

n

θ

P (D; θ) = θ (1 −(
nH

n + nH T) nH θ)nT
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3. MLE Derivation
General procedure: To solve for 
1. Plug data into distribution and take logarithm: 
2. Take the derivative and set it to zero

Question: What is the MLE derivation for the coin toss with a
binomial distribution?

 
Pros: If  is large and model is correct, finds true parameters
Cons: Can overfit when  is small and can be wrong if model is
incorrect

θ̂MLE

logP (D; θ)

n

n
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4. Incorporating Prior Knowledge
Idea: Add imaginary data that mirrors our prior knowledge

Example:  imaginary heads and  imaginary tails

Bayesian Formalization: Model  as a random variable with
prior distribution 
Bayes Rule:

Components:
: prior distribution (before seeing data)

: likelihood of data
: posterior distribution (after seeing data)

mH mT

=θ̂
n + n +m +mH T H T

n +mH H

θ

P (θ)

P (θ ∣ D) =
P (D)

P (D ∣ θ)P (θ)

P (θ)
P (D ∣ θ)
P (θ ∣ D)

5



5. Maximum a Posteriori (MAP)
Two-step procedure:
1. Make assumption about distribution of data and the distribution of 
2. Set parameters to maximize likelihood of observed data and parameters

MAP Principle: Choose most likely  given data and prior distribution 

Example: Beta distribution as a coin prior

Question: What is the MAP derivation for the coin toss with a binomial
distribution and a beta prior? How does it relate to "imaginary" data?

θ

θ

θ̂MAP = P (θ ∣ D)
θ

argmax

= logP (D∣θ) + logP (θ)
θ

argmax

P (θ) =
B(α,β)

θ (1 − θ)α−1 β−1
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6. MLE and MAP Summary
Given training data , parameters , test point :D θ xt

MLE: Prediction: 
Learning: 
 is a model parameter

Works if  is large enough and model is correct

P (y ∣ x ; θ)t

θ = argmax P (D; θ)θ

θ

n

MAP: Prediction: 
Learning: 
 is a random variable

 penalizes deviating from prior belief
Can work for smaller  if the prior is correct (and the model)

P (y ∣ x , θ)t

θ = argmax P (θ ∣θ D) ∝ P (D ∣ θ)P (θ)
θ

log[P (θ)]
n

Convergence: As , n→∞ →θ̂MAP θ̂MLE
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7. Estimating Distributions for ML
Training data:  drawn i.i.d. from 
Joint distribution:

Marginal distributions:

Conditional distributions:

D = (x , y ),… , (x , y )1 1 n n P (X,Y )

(x, y) =P̂

(y) =P̂

(x) =P̂

(x∣y) =P̂

(y∣x) =P̂
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