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0. The Curse of Dimensionality
Points drawn from a probability distribution tend to never be close
together in high dimensions.
Volume Analysis: For uniform distribution on features, to capture
neighbors in a unit cube , the required edge length
Question:

What happens to for fixed and getting big?
How big does need to get to keep constant?

Mitigating the Curse:
Linear Separation: Pairwise distances between points grow with
dimensionality, but distances to hyperplanes do not.
Low Dimensional Structure: Data often lies on low-dimensional
manifolds despite a high-dimensional .
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1. Perceptron Classifier
Core Assumption: Binary classification with and data
that is linearly separable
Classification Rule: Determined by which side of a hyperplane the
input is on.
Formally: given by direction and bias

Without the bias term, the hyperplane that defines would always
have to go through the origin.
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2. Simplified Formulation
Absorbing bias term: add one additional constant dimension

New formulation: under the new definition of and weight ,

Key Observation: Note that is classified correctly (i.e. on the
correct side of the hyperplane) if
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3. Perceptron Algorithm
Input: Training data D = {(x , y ), ..., (x , y )}1 1 n n

Initialize: w = 0

While TRUE:
1. set
2. for

if

3. if : break

m = 0
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y (w x ) ≤i
⊤

i 0

w = w + y xi i

m = m + 1

m = 0
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4. Perceptron Convergence
Guarantee: If a data set is linearly separable, Perceptron finds a
separating hyperplane in finite steps.
Separability: such that for all .
Rescaling: weights, features such that ,
Margin: the distance from the hyperplane to the closest data point:

Key Observation: For all we must have .
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5. Convergence Theorem
Theorem: For separable data with margin , the Perceptron algorithm
makes at most mistakes.
Question: What is more desirable, a large margin or a small margin?
When will the Perceptron converge quickly?

Fact 1: for misclassified , we have
Fact 2: for any , we have due to margin (previous slide)
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6. Convergence Proof part 1
Consider the effect of an update on :

Consider the effect of an update on :

This means that for each update, grows by at least and
grows by at most 1.

w w⊤ ∗

(w + yx) w⊤ ∗ = w w + y(x w )⊤ ∗ ⊤ ∗

≥ w w + γ⊤ ∗

w w⊤

(w + yx) (w + yx)⊤ = w w + 2yw x + y (x x)⊤ ⊤ 2 ⊤

≤ w w + y (x x)⊤ 2 ⊤

≤ w w + 1⊤

w w⊤ ∗ γ w w⊤
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7. Convergence Proof part 2
We initialize . Hence, initially and .
After updates, (1) and (2)

Starting with (1) and ending with (2)

Rearranging , we conclude

w = 0 w w =⊤ 0 w w =⊤ ∗ 0
M w w ≥⊤ ∗ Mγ w w ≤⊤ M

Mγ ≤ w w⊤ ∗

= ∥w∥∥w ∥ cos(θ)∗

≤ ∥w∥

= ≤w w⊤ M

Mγ ≤ M M ≤ 1/γ2
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8. Summary
The Perceptron is a binary linear classifier
We absorb the bias term by adding a constant feature dimension
Guaranteed to converge if data is linearly separable

Number of mistakes bounded by where is the margin
Larger margins lead to faster convergence

Cannot solve non-linearly separable problems (like XOR)
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