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1.

Perceptron Classifier

Core Assumption: Binary classification with y; € {—1,+1} and data
that is linearly separable
Classification Rule: Determined by which side of a hyperplane the
input x is on.
Formally: given by direction w and bias b

h(x;) = sign(w'x; + b)
Without the bias term, the hyperplane that w defines would always
have to go through the origin.

0. The Curse of Dimensionality

e Points drawn from a probability distribution tend to never be close
together in high dimensions.
e Volume Analysis: For uniform distribution on features, to capture k

neighbors in a unit cube [0,1]¢, the required edge length ¢¢ ~ k/n
¢ Question:
= What happens to £ for k/n fixed and d getting big?
= How big does n need to get to keep ¢ constant?

e Mitigating the Curse:
= Linear Separation: Pairwise distances between points grow with
dimensionality, but distances to hyperplanes do not.
= Low Dimensional Structure: Data often lies on low-dimensional
manifolds despite a high-dimensional d.

2. Simplified Formulation
e Absorbing bias term: add one additional constant dimension

X; becomes [};’], w becomes {‘ﬂ

e New formulation: under the new definition of x and weight w,
h(x;) = sign(w'x)
e Key Observation: Note that x; is classified correctly (i.e. on the
correct side of the hyperplane) if

yi(wai) >0



3. Perceptron Algorithm
Input: Training data D = {(x1,%1), -, (Xn,Yn)}
Initialize: w =0
While TRUE:
l.setm =0
2. for (x;,y;) € D
o ify;(wix;) <0
W =W YX;
"m=m+1

3. if m = 0: break

5. Convergence Theorem

e Theorem: For separable data with margin ~, the Perceptron algorithm
makes at most 1/42 mistakes.

* Question: What is more desirable, a large margin or a small margin?
When will the Perceptron converge quickly?

 Fact 1: for misclassified x, we have y(x"w) <0
e Fact 2: for any x, we have y(x'w*) > v due to margin (previous slide)

4. Perceptron Convergence

e Guarantee: If a data set is linearly separable, Perceptron finds a
separating hyperplane in finite steps.

Separability: 3w* such that y;(x"w*) > 0, for all (x;,y;) € D.
Rescaling: weights, features such that |w*|| =1, ||x;]| <1 Vx; € D
Margin: the distance v from the hyperplane to the closest data point:

: T ¥
= min X W
! (xi,yneD| <%l
Key Observation: For all x we must have y(x'w*) = |x"w*| > 7.

6. Convergence Proof part 1

e Consider the effect of an update on w'w*:
(w+yx) w'=w'w" +y(x

>w' w4y

Tw*)

e Consider the effect of an update on w'w:
(w+yx) (w+yx) =w' w+2yw ' x +¢°(x' x)
<w'w+9i(x'x)
<w'w+1
¢ This means that for each update, w'w* grows by at least y and w'w
grows by at most 1.



7. Convergence Proof part 2
e We initialize w = 0. Hence, initially w'w = 0 and w'w* = 0.
e After M updates, (1) w'w* > Myand Q)w'w < M

e Starting with (1) and ending with (2)
M~y <w'w*

= [[wl[l[w*[| cos(6)

=vVwiw<vM
e Rearranging My < v/ M, we conclude M < 1/~*

8. Summary

The Perceptron is a binary linear classifier
We absorb the bias term by adding a constant feature dimension
Guaranteed to converge if data is linearly separable

= Number of mistakes bounded by 1/42 where « is the margin

= |arger margins lead to faster convergence

Cannot solve non-linearly separable problems (like XOR)



