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0. No Free Lunch
Every ML algorithm must make assumptions!
Choice of algorithm encodes assumptions about data set/distribution
There is no one perfect approach for all problems!

Common assumption: the relationship between and is locally
smooth
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1. The k-NN Algorithm
Core Assumption: Similar inputs have similar outputs.
Classification Rule: For a test input , assign the most common label
amongst its most similar training inputs.
Formally: Let be the set of neighbors such that

then the prediction is given by

Tie-Breaking Tip: In case of a draw, return the result of -NN with a
smaller .
Question:What happens when ? ?
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2. Distance Metrics
The classifier fundamentally relies on a distance metric; the better it
reflects label similarity, the better the classifier.

Minkowski Distance

dist(x, x ) =′ ∣x − x ∣(
r=1

∑
d

r r
′ p)

1/p

Question: what is the Minkowski Distance for:
p = 1
p = 2
p → ∞
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3. Constant Classifier
Concept: Predicting the same label independent of the features.
Question: What is the best constant classifier?

Significance: Provides a baseline for debugging. Your classifier should
perform much better!
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4. Bayes Optimal Classifier
Concept: Predicting the most likely label if you knew the conditional
distribution .
Prediction: .
Error Rate: .
Significance: Provides a theoretical lower bound on the achievable
error rate.

P (y∣x)
y =∗ h (x) =opt argmax P (y∣x)y

ϵ =BayesOpt 1 − P (y ∣x)∗
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5. 1-NN Convergence Proof

Theorem (Cover and Hart, 1967): As , the 1-NN error for
binary classification is no more than twice the Bayes error.
Key Mechanism: As , the distance to the nearest neighbor

, making identical to .
Proof Idea: What is the probability that the label of is not the
label of ?
Question: Explain each of the following steps

n → ∞

n → ∞
dist(x , x ) →NN t 0 xNN xt

xNN

xt

ϵ =NN P(y ∣x )(1 −∗
t P(y ∣x )) +∗

NN P(y ∣x )(1 −∗
NN P(y ∣x ))∗

t

≤ (1 − P(y ∣x )) +∗
NN (1 − P(y ∣x ))∗

t

= 2(1 − P(y ∣x ))∗
t

= 2ϵBayesOpt
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6. The Curse of Dimensionality
Points drawn from a probability distribution tend to never be close
together in high dimensions.
Volume Analysis: For uniform distribution on features, to capture
neighbors in a unit cube , the required edge length
Question:

What happens to for fixed and getting big?

How big does need to get to keep constant?

k

[0, 1]d ℓ ≈d k/n

ℓ k/n d

n ℓ
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7. Mitigating The Curse
Linear Separation: Pairwise distances between points grow with
dimensionality, but distances to hyperplanes do not.
Low Dimensional Structure: Data often lies on low-dimensional
manifolds despite a high-dimensional .
Question: Images of faces have low dimensional structure. Why?

d
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8. Summary of kNN
Simple and effective classifier if distances reliably correspond to
meaningful notion of dissimilarity.
Provably accurate as , but also becomes slow.
For large , "neighbors" may no longer be similar to each other, so the
key assumption breaks down

n → ∞
d
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