



# k-Nearest Neighbors and the Curse of Dimensionality

Cornell CS 3/5780 · Spring 2026

## 1. The k-NN Algorithm

- **Core Assumption:** Similar inputs have similar outputs.
- **Classification Rule:** For a test input  $\mathbf{x}$ , assign the most common label amongst its  $k$  most similar training inputs.
- **Formally:** Let  $S_{\mathbf{x}} \subseteq D$  be the set of  $k$  neighbors such that

$$\text{for all } (\mathbf{x}', y') \in D \setminus S_{\mathbf{x}}, \quad \text{dist}(\mathbf{x}, \mathbf{x}') \geq \max_{(\mathbf{x}'', y'') \in S_{\mathbf{x}}} \text{dist}(\mathbf{x}, \mathbf{x}'')$$

then the prediction is given by

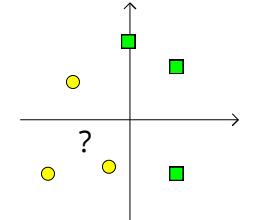
$$h(\mathbf{x}) = \text{mode}(y' : (\mathbf{x}'', y'') \in S_{\mathbf{x}})$$

- **Tie-Breaking Tip:** In case of a draw, return the result of  $k$ -NN with a smaller  $k$ .

- **Question:** What happens when  $k = 1$ ?  $k = |D| = n$ ?

## 0. No Free Lunch

- Every ML algorithm must make assumptions!
- Choice of algorithm encodes assumptions about data set/distribution
- There is no one perfect approach for all problems!



- Common assumption: the relationship between  $\mathbf{x}$  and  $y$  is locally smooth

1

2

## 2. Distance Metrics

The classifier fundamentally relies on a distance metric; the better it reflects label similarity, the better the classifier.

### Minkowski Distance

$$\text{dist}(\mathbf{x}, \mathbf{x}') = \left( \sum_{r=1}^d |x_r - x'_r|^p \right)^{1/p}$$

- **Question:** what is the Minkowski Distance for:
  - $p = 1$
  - $p = 2$
  - $p \rightarrow \infty$

3

4

### 3. Constant Classifier

- **Concept:** Predicting the same label independent of the features.
- **Question:** What is the best constant classifier?
- **Significance:** Provides a baseline for debugging. Your classifier should perform much better!

5

### 5. 1-NN Convergence Proof

- **Theorem (Cover and Hart, 1967):** As  $n \rightarrow \infty$ , the 1-NN error for binary classification is no more than twice the Bayes error.
- **Key Mechanism:** As  $n \rightarrow \infty$ , the distance to the nearest neighbor  $\text{dist}(\mathbf{x}_{NN}, \mathbf{x}_t) \rightarrow 0$ , making  $\mathbf{x}_{NN}$  identical to  $\mathbf{x}_t$ .
- **Proof Idea:** What is the probability that the label of  $\mathbf{x}_{NN}$  is not the label of  $\mathbf{x}_t$ ?
- **Question:** Explain each of the following steps
  - $\epsilon_{NN} = P(y^*|\mathbf{x}_t)(1 - P(y^*|\mathbf{x}_{NN})) + P(y^*|\mathbf{x}_{NN})(1 - P(y^*|\mathbf{x}_t))$
  - $\leq (1 - P(y^*|\mathbf{x}_{NN})) + (1 - P(y^*|\mathbf{x}_t))$
  - $= 2(1 - P(y^*|\mathbf{x}_t))$
  - $= 2\epsilon_{\text{BayesOpt}}$

### 4. Bayes Optimal Classifier

- **Concept:** Predicting the most likely label if you knew the conditional distribution  $P(y|\mathbf{x})$ .
- **Prediction:**  $y^* = h_{\text{opt}}(\mathbf{x}) = \text{argmax}_y P(y|\mathbf{x})$ .
- **Error Rate:**  $\epsilon_{\text{BayesOpt}} = 1 - P(y^*|\mathbf{x})$ .
- **Significance:** Provides a theoretical lower bound on the achievable error rate.

6

### 6. The Curse of Dimensionality

- Points drawn from a probability distribution tend to never be close together in high dimensions.
- **Volume Analysis:** For uniform distribution on features, to capture  $k$  neighbors in a unit cube  $[0, 1]^d$ , the required edge length  $\ell^d \approx k/n$
- **Question:**
  - What happens to  $\ell$  for  $k/n$  fixed and  $d$  getting big?
  - How big does  $n$  need to get to keep  $\ell$  constant?

7

8

## 7. Mitigating The Curse

- **Linear Separation:** Pairwise distances between points grow with dimensionality, but distances to hyperplanes do not.
- **Low Dimensional Structure:** Data often lies on low-dimensional manifolds despite a high-dimensional  $d$ .
- **Question:** Images of faces have low dimensional structure. Why?

## 8. Summary of kNN

- Simple and effective classifier if distances reliably correspond to meaningful notion of dissimilarity.
- Provably accurate as  $n \rightarrow \infty$ , but also becomes slow.
- For large  $d$ , "neighbors" may no longer be similar to each other, so the key assumption breaks down