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1. The k-NN Algorithm

e Core Assumption: Similar inputs have similar outputs.

e Classification Rule: For a test input x, assign the most common label
amongst its k most similar training inputs.

Formally: Let Sy C D be the set of k£ neighbors such that

for all (x',y') € D\ S, dist(x,x') > ( megxs dist(x, x")
xl!,y” c X

then the prediction is given by
h(x) = mode(y" : (x",y") € Sy)
Tie-Breaking Tip: In case of a draw, return the result of £&-NN with a
smaller k.
Question: What happens when k =17 k = |D| = n?

0. No Free Lunch

Every ML algorithm must make assumptions!
Choice of algorithm encodes assumptions about data set/distribution
There is no one perfect approach for all problems!

e Common assumption: the relationship between x and y is locally
smooth

2. Distance Metrics

The classifier fundamentally relies on a distance metric; the better it
reflects label similarity, the better the classifier.

Minkowski Distance

d 1/p
dist(x,x’) = (Z |z, — w;]p>
r=1

e Question: what is the Minkowski Distance for:
"= 1
"= 2
" p— 00



3. Constant Classifier

e Concept: Predicting the same label independent of the features.
¢ Question: What is the best constant classifier?

e Significance: Provides a baseline for debugging. Your classifier should
perform much better!

5.1-NN Convergence Proof

Theorem (Cover and Hart, 1967): As n — oo, the 1-NN error for

binary classification is no more than twice the Bayes error.

Key Mechanism: As n — oo, the distance to the nearest neighbor
dist(xyw, %) — 0, making xyy identical to x;.

Proof Idea: What is the probability that the label of xxy is not the
label of x,?

Question: Explain each of the following steps

" enn = P(y"[x:) (1 — P(y"[xwn)) + Py [xeaw) (1 — P(y"[x:))

m < (1-—P(y*|xwnn)) + (1 —P(y*|xt))
" =2(1—-P(y"|xt))

"= 26BayesOpt

4. Bayes Optimal Classifier
e Concept: Predicting the most likely label if you knew the conditional
distribution P(y|x).
* Prediction: y* = hgy(x) = argmax, P(y|x).
e Error Rate: egyyesopt = 1 — P(y*[x).
e Significance: Provides a theoretical lower bound on the achievable
error rate.

6. The Curse of Dimensionality

e Points drawn from a probability distribution tend to never be close
together in high dimensions.
e Volume Analysis: For uniform distribution on features, to capture k

neighbors in a unit cube [0,1]¢, the required edge length ¢¢ ~ k/n
¢ Question:
= What happens to £ for k/n fixed and d getting big?

= How big does n need to get to keep ¢ constant?



7. Mitigating The Curse

e Linear Separation: Pairwise distances between points grow with
dimensionality, but distances to hyperplanes do not.

e Low Dimensional Structure: Data often lies on low-dimensional
manifolds despite a high-dimensional d.

e Question: Images of faces have low dimensional structure. Why?

8. Summary of kNN

e Simple and effective classifier if distances reliably correspond to
meaningful notion of dissimilarity.

e Provably accurate as n — oo, but also becomes slow.

e For large d, "neighbors" may no longer be similar to each other, so the
key assumption breaks down



