Lec 5: Clustering, K-means and Gaussian Mixture Models
(CS3780/5780, Sp26)

Setup: Unsupervised learning, Clustering

Past couple of lectures we looked at the supervised learning problem. In this lecture we look at the
so called unsupervised learning problem where we are given an unlabeled dataset

D ={xy,...,zn},

with no labels /. Our goal is to uncover latent structure in the data. In the next lecture the latent
structure will be a low dimensional representation of the dataset, but for this lecture we are going
to look at the problem of “clustering". That is given the dataset D, we want to find a natural way
to partition the points in D into K clusters or groups. That is, for each x; we associate with it a
cluster identity C; € {1,...,k} such that this grouping makes some intuitive or natural sense. So
a clustering of the dataset D = {x1,...,z,} yields the cluster assignment {C1,...,Cy}.

O
O o
(6]
(0] o
Supervised setting , Unsupervised setting ,

Figure 1: Supervised Vs Clustering

1 K-means clustering

Given the number of clusters k, our goal is to find a good clustering of the data points. What does
it mean for clusters to be “good”? In k-means, we define goodness by the distance of each point
to its cluster mean (centroid). This connects to the intuition “similar points are labeled similarly”
(as in k-nearest neighbors), but now without labels.



1.1 The clustering algorithm

Given data points D = x1,...,, with z; € R? and an integer k, we want an assignment of points
to k clusters that minimizes distance to cluster centers. Let the assignment be C; = i meaning
point z; belongs to cluster 4, for ¢ € {1,...,k}. This is a hard assignment: each point belongs to
exactly one cluster.

The Lloyds algorithm also nick named k-means algorithm performs iteratively the following
steps to convergence (or long enough) tp produce the final clustering assignments of the points:

(a) Randomly initialize k cluster centers p, ..., u € R%.
(b) Reassign each point to the nearest center (for f2 / Euclidean distance):

C; = argmin ||z; — s, .
1e{1,....k}

(c) Recompute each center as the mean of its assigned points:

i = Z?:l HCj =i} x;
' X YO =i}

where 1{-} is the indicator function.

Repeat steps (b) and (c) until assignments do not change; then k-means is said to have con-
verged.
1.2 Properties of k-means

Define the objective function function:

1) = 3 o - e,
j=1

This above objective is often referred to as the K-means objective and the Lloyds algorithm can be
seen as a greedy iterative procedure that tries to find clustering that minimizes this objective.
Observe that the algorithm:

o minimizes J w.r.t. C holding p fixed (step (b)),
o then minimizes J w.r.t. u holding C fixed (step (c)).

Hence J decreases monotonically (decreases or stays the same), and the objective is non-negative.
Hence k-means is guaranteed to converge eventually.

While unlikely in practice, k-means can oscillate between different clusterings with the same
objective value J.

Global optimality? In general, k-means does not guarantee finding a global minimum of J. In
fact, finding a clustering assignment that minimizes J globally is known to be an np hard problem.
Different initial centroids can yield different local minima using the Lloyd’s algorithm. A common
practical strategy is to run k-means multiple times with different random initializations and choose
the run with the lowest J.



1.3 On choosing the number of clusters

There is no universally correct way to choose k; domain knowledge and application requirements
help. A common heuristic is the elbow method:

(a) Run k-means for different values of k.

(b) For each k, compute J(C, u) after convergence (often averaged over multiple random initial-
izations).

(c) Choose the “elbow” point beyond which decreases in J are minimal.

Note: Increasing k will always decrease J (e.g., if each point is its own cluster), but improve-
ments diminish after the “true” number of clusters (in an informal sense).

2 Gaussian Mixture Model

Consider the example where from telescope we have measurements of objects in night sky from
telescope (Eg. photometry and spectroscopy). Without supervision we can model the data as
gaussian mixture model to cluster objects into quasars, galaxies and stars.
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Figure 2: Quasars Vs Galaxies Vs Stars

2.1 Assumptions
We assume:

o There are k clusters (components), and k is known.



o Data from each cluster is (approximately) modeled by a Gaussian.

o Mixing proportions are unknown (“unknown mixture”): components can be sampled with
different probabilities.

A mixture of Gaussians can approximate many continuous distributions arbitrarily well given
enough components.

We only get data set D and dont know which points came from which cluster/gaussian. Since
we are talking about gaussian distribution, one can never completely rule out that a particular
point x; does not belong to cluster/gaussian 7. Hence we take a probabilistic view that yields soft
assignments. Instead of stating C; = 7, we model the posterior probability

P(Zj=1i] ),
where Z; is a latent variable indicating which component generated x;. You can think of Z as a
multinomial random variable indicating the outcome of rolling a k-faced die.
2.2 The mixture of Gaussians model (1D example)

For simplicity, consider 1D and k = 2. Let two Gaussians have means p1 and g2 (and variances

0?,02). Suppose we sample from component 1 with probability p and from component 2 with

probability 1 — p. Then the prior probabilities are
P(Zj:1):p, P(ZjZQ):l—p.

If we somehow knew which points came from which component, we could estimate parameters
by computing within-cluster means/variances, and estimate p by frequency. Collect parameters as

O = {/’Ll, lu(Q)a 01, 027p}'
Then we can compute the posterior via Bayes’ rule:

P(z;| Z; =14;0) P(Z; = i;0)
P(z;)

P(Zj=i|x;0) =

By assumption,
7 |7 =i} ~ N (piro?)
The marginal density is
P(zj) =) P(z; | Zj = £;0) P(Z; = (;0).
/=1

For k = 2, this is

P(zj) =pP(x; | Z; =1;0) + (1 —p) P(z; | Z; = 2;0).



2.3 Formalization (general d and k)

Given z1,...,x, € R% and k, our goal is to estimate
P(Zj =1 | CC]'),
the probability that x; belongs to cluster ¢ given we observed z;.
Model:
Zj~m (for k = 2 this reduces to Bernoulli(p)),
and

zj | {Z; =i} ~ N(1i, %) (in 1D, 5 = 07).

We do not observe Zj; it is latent.

2.4 The Expectation Maximization (EM) algorithm

Keep k-means in mind: guess centroids, assign points, recompute centroids. For mixture of Gaus-
sians, we iteratively estimate parameters and compute soft assignments.

(a) Randomly initialize © = ( p1,. .., fg, X1, .-, Dk, T).
(b) Compute posteriors (soft assignments) using Bayes’ rule. For i € {1,..., K},

P($j’Zj:i;@)7ri

P(Zj=1i|z;0) = .
’ ’ St Py | Zy =1;0) m

Using the Gaussian density:

, 1 B
P(z; | Z; = i;0) = — (@ — i) T8 (- m)) :

1
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(c) Update parameters using the soft assignments:
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Repeat steps (b) and (c¢) until the cluster assignments (posteriors) no longer change appreciably.
As with k-means, this resembles coordinate descent and can be susceptible to local optima.

Connection to k-means. If variances o; — 0 for all components, then the Gaussian likelihood
1 T — pi)?
exp _( J é%)
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becomes extremely peaked around pu;, yielding effectively hard assignments to the nearest mean.
Thus, mixture-of-Gaussians clustering can be viewed as a generalization of k-means.
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