ANNOUNCEMENTS - NOT OPTIONAL EXTRA-CREDIT

1. P8 released, due 05/04, late due 05/06 - last day of classes
2. [Extra-credit] Kaggle, HW8 to be released

OTHER BUNDONCEMENTS -

1. Pre-envollment starts. Monday (04/28)
Possible next steps to 3780 -.

CS 3700	Foundations of AI Reasoning and Decision-Making
CS 4750	Foundation of Robotics
CS 4756	Robot Learning
CS 4782	Deep Learning
CS 4670	Introduction to Computer Vision
CS 4789	Introduction to Reinforcement Learning
CS 4783	Mathematical Foundations of Machine Learning
CS 4740	Natural Language Processing
CS 4787	Principles of Large-Scale Machine Learning Systems

2. Want to TA for 3780/5780 next semester, apply soon!

Last lecture + last week. Fully-connected NN (FCN) X ∈ IR³ hiddens how many lines did I draw? - 12 lines, or 12 weights W(Q) & 12 (Palin)

b(l) < 18th (Aditya)

non-lincarity

Same model, different modality

let's start simple, just grayscale)

We want to use FON to classify berry!

Dom Says

b/w 0,1 => 0.0 = black } 0:6 (0.7)

Varija says, 32X32 = 1024 pixels

1024-din O hidden

-> 300 x 300 x3 . but (53980 students = 270,000 USC 1024×1024×3 heights pir miron for layer) -> could overfit to training tata!

> .3 x 106. E = 3M weight)

beyond scalability - towards inductive bias

Test Sample

· Test sample

There might be more to life than a single pixel!

boal: We need some architecture that is more tuned to image data

" inductive bias"

Idea - look at particles !

more specifically, " plop the filter, compute dot product, slide!"

· Think .. fifter = detects the edge / neck of llama

20

wout with that filter

pose	- h	han	ONE	filter	_	why	Not	7	•			•		
We .	lan	n'sc	More	than	one	filter	<u>;</u>	ve 1	want			•		
	//		•	weights	· · ·	out .		•	filte	- 2γ	= 1	Nswa	l feat	Mre
		*) >		Won	r ·	•	•		•		
.) ,	bias		· \		٠			•		•	•	
		•		•	54		all of Ureduce			•	٨	•	•	
	•			۰	•		4x h	Jout !	X W on	· ·		•	•	
Q.	I C		Canal	\10. (A	٠ كا	x31.X	? . ? .	. 00 P.	usin		-,, <u>-</u> -	· · · ·	<u>دار</u>	
•	•	vve ·												ר ^י
	•	•		wal	d by	e the	wid	th/1	reight	of	the	out		رآ
		Assur	what	mul. Love me	d by	e the	wid	th/1	reight	of	the	out		ر. ا
	litya	Assur - 2	what m m &xz&x 5x5x	muliove me	d bo	e the	wid ne pix SX SX3	th/1 :e1	reight	of tim	the e])	out		ر) ا
	litya	Assur - Z	what m m 8xz8x	muliove me	d bo	e the	wid ne pix SX SX3	th/1 :e1	reight	of time	tru u])	out		ر. 1
	litya	Assur - Z	what m m sxisx sxsx sxsx	muliove me	d bo	e the	wid ne pix SX SX3	th/1 :e1	reight	of time	the (X) (X2)	out	put?	ر. 1
	litya	Assur - Z	What M M 8X28X SX5X SX67 SX7	muliove me	d bo	e the	wid ne pix SX SX3	th/1 :e1	reight	of time	the LXI LXZ LX3	out	put)	

ing -> [conv+rely] X.N -> . FCN (small). as the output numer

- Now do you train convincts - backprop + SED by momentum by emstrop

. The Shrinkage problem One convolution layer "Chrinks" The output width 32 x32 x3 => 28 x 28 => 24 x 24 input ima feature may autivation map full - width filter tuery pixel is modeled equally is a configuration such that. the output feature map has the image same with as the input ing (un padded) zero-pad filter size

Translational cambanana -

Conv gives you transl- Equivariance (if padding is right)

translate (conv (ing)) = conv (translated (ing))

translated ing, but feature detected!

Recuptive fields . (Zeno-gadding). latin layers Capture complex puttins tanky layer; capture . simple patterns Need '4' unvolution layers to observe a pissel that "see"s a neodos the whole image we have to use 1024 x losy imgs, we would need 500 more conv layers to observe a single pixel that "sees" the whole ima!

1. STHOE

"Tump", don't move one pixel at a time, move 2/3/more
Simple iden: move in Strider of two, say!

this increases the receptive area faster!

Do Similar to convolution, but not convolution

Simply take the maximum value in my grid
= looking layer, Does Not have my weight!

ing
$$\rightarrow \left[\left(con+rely \right) \times N \rightarrow Pool \right] \times M \rightarrow FCN$$

. - Avg pooling = blurred effect, smooths out outliers

. > . Max pooling = . would ensure Jancitinty to minor shifts?

Paper	Citation count (04/24/2025)
Darwin, "The Origin of The Species by Means of Natural Selection" (1859)	65,778
Shannon, "A Mathematical Theory of Communication" (1948)	66,335
Watson and Crick, "A Structure for Deoxyribose Nucleic Acid" (1953)	19,909
The ATLAS Collaboration, "Observation of a new particle in the search	12,071
for the Standard Model Higgs boson with the ATLAS detector at the LHC"	
(2012)	
Krizhevsky, Sutskever, and Hinton, "ImageNet Classification with Deep	142,510
Convolutional Neural Networks" (2012) [AlexNet]	