CS 372

Homework 3

Due date:

In class Thusrday Feb. 28, 2008 By email Sunday 11:59 p.m. to Robert Xiao (<u>rkx2@cornell.edu</u>) use subject line (HWK#3 – CS372)

SHOW YOUR WORK FOR ALL QUESTIONS

- 1 Determine the truth value of each of these statements if the domain of each variable consists of all real numbers
- a) $\forall x \exists y (x^2 = y)$
- b) $\forall x \exists y (x = y^2)$
- c) $\exists x \forall y (xy = 0)$
- d) $\exists x \exists y (x + y \neq y + x)$
- e) $\forall x (x \neq 0 \rightarrow \exists y (xy = 1))$
- f) $\exists x \forall y (y \neq 0 \rightarrow xy = 1)$
- g) $\forall x \exists y (x + y = 1)$
- h) $\exists x \exists y (x + 2y = 2 \land 2x + 4y = 5)$
- i) $\forall x \exists y (x + y = 2 \land 2x y = 1)$
- j) $\forall x \ \forall y \ \exists z \ (z = (x+y)/2)$
- **2** Let F(x,y) be the statement "x can fool y", where the domains consists of all people in the world. Use quantifiers to express each of these statements:
 - a) Everybody can fool Fred
 - b) Evelyn can fool everybody
 - c) Everybody can fool somebody
 - d) There is no one who can fool everybody
 - e) Everyone can be fooled somebody
 - f) No one can fool Fred and Jerry
 - g) Nancy can fool exactly two people
 - h) There is exactly one person whom everybody can fool
 - i) No one can fool himself or herself
 - j) There is someone who can fool exactly one person besides himself or herself

- **3.** Rewrite each of these statements so that negations appear only within predicates (that is, so that no negation is outside a quantifier or an expression involving logical connectives).
 - a) $\neg \forall x \forall y P(x, y)$
 - b) $\neg \forall y \exists x P(x, y)$
 - c) $\neg \forall y \forall x (P(x, y) \land Q(x, y))$
 - d) $\neg (\exists x \exists y \neg P(x, y) \land \forall x \forall y Q(x, y))$
 - e) $\neg \forall x (\exists y \forall z P(x, y, z) \land \exists z \forall y P(x, y, z))$
- **4.** Show that $\forall x \ P(x) \lor \forall x \ Q(x)$ and $\forall (x) \ (P(x) \lor Q(x))$ are not logically equivalent.
- **5.** For each of these arguments, explain which rules of inference are used for each step.
 - a) Linda, a student in this class, owns a red convertible. Everyone who owns a red convertible has gotten at least one speeding ticket. Therefore, someone in this class has gotten a speeding ticket.
 - b) There is someone in this class who has been in Barcelona. Everyone who goes to Barcelona visits Picasso Museum. Therefore someone in this class has visited Picasso Museum.
- **6.** Use resolution refutation to prove:

$$[(Q \rightarrow \neg P)] \rightarrow [(Q \rightarrow P) \rightarrow \neg Q]$$