CS 3410 Fall 2025

Lab 10 Worksheet: Shall we execute some commands?
1. Call Me Maybe

Part 1A

When a program performs a system call, several steps need to be taken as control transfers between the user space
and the operating system kernel. Given the following steps, please arrange them in the correct order of execution.

Switch to kernel space

Return to instruction after the system call
Handler finishes

Application makes a system call (ecall on RISC-V)

Switch to user space

m m O N W >

Trap handler runs

Part 1B
Compatre traps, interrupts, and system calls — how are they similar and how do they differ?

2. Fork or be Forked

Assume the parent process’s PID is 5 and that when the fork call succeeds, the child process is assigned PID
10. Please fill in the results of the print statements for parts (a) and (b) and answer part (c):

// omitted imports
int main(void) {
pid_t pid = fork();

if (pid) { printf("A: pid = %d\n", pid); } (a) “A: pid = »
else { printf("B: pid = %d\n", pid); } (b) “B: pid = >
wait(NULL);

printf("C: pid = %d\n", pid); (c) How many line C’s are printed?

Is there an order?

return 0;

CS 3410 Fall 2025

Lab 10 Worksheet: Shall we execute some commands?

3. Caught Napping

Part 3A

Examine the following partial implementation of myint, which sleeps for n seconds (in 1-second chunks) before
sending SIGINT to itself. Please complete the main function.

// omitted imports
int main(int argc, char **argv) {
for (int i = 0; i < atoi(argv[1]); i++) { (Q) (1); }
kill((b) » (€))
exit(0);
}
Part 3B

If we insert pid_t pid = fork(); before the for loop, how do we modify the program such that SIGTERM is sent to
the child process? What is the exit code of the main program?

Part 3C
Explain briefly the difference between the SIGINT, SIGTERM, and SIGKILL signals.

4. Reaping Child Processes

Examine the following program and answer the following questions:

int main() {
int status; What will be printed when this program is run?
pid_t pid = fork();

A. “Exited”
if (pid == @) { xte

B. “Terminated”

exit(3);
}
waitpid(pid, &status, 9); Suppose exit(3) is replaced with abort (). What will be
if (WIFEXITED(status)) { printed now?

printf("Exited");
} else if (WIFSIGNALED(status)) {
printf("Terminated”);

}

return 0; Suppose the child crashes due to an invalid memory
} access (segmentation fault). What will the program print?

A. “Exited”

B. “Terminated”

A. “Exited”

B. “Terminated”

