
CS 3410 Lab 10
Fall 2025

1

CS 3410 Fall 2024

Agenda

1 Control Flow

2 System Calls

2

3 A10 Tips

Control Flow

3

CS 3410 Fall 2024

System Calls

● Procedure-like interface between user programs and the kernel
○ User programs may need to request services from the kernel such as

reading a file (read) or loading a new program (execve)
● Processors provide a syscall instruction that causes a trap to the exception

handler and and calls the appropriate kernel routine

4

CS 3410 Fall 2024

Error Handling

● Return -1 and set the global integer variable errno with error message.
● Linux man pages contains documentation on system libraries and system calls.
● Programmers should always check for errors when using system calls:

int main(int argc, char** argv) {

 pid_t pid = fork();

 if (pid < 0) {

 fprintf(stderr, "fork error: %s\n", strerror(errno));

 exit(-1);

 }

}

5

CS 3410 Fall 2024

Exceptions and Interrupts

● What if program runs out of memory/executes an illegal instruction?

● The same hardware mechanism that handles system calls also handles

exceptions and interrupts!

● Interrupts are critical for proper program function e.g. mouse movement, key

strokes.

● Instead of busy waiting on a disk read, OS can interrupt the program when its

ready.

6

CS 3410 Fall 2024

Implementation and Worksheet

● Visit the lab page and work through the examples
● Complete question 1 in the worksheet

7

System calls

8

CS 3410 Fall 2024

Process IDs

● Each process has a unique positive (nonzero) process ID (PID)

○ The getpid function returns the PID of the calling process

○ The getppid function returns the PID of the parent process

● Both functions return a value of type pid_t, which on Linux systems is defined

as int

9

CS 3410 Fall 2024

Fork

● A parent process creates a new running child process by calling the fork

function

● The newly created child process is nearly identical to the parent process: the

child gets an identical copy of the parent’s user-level virtual address space

○ The child also gets identical copies of any of the parent’s open file

descriptors

● The most significant difference is that the parent and child have different PIDs

● fork is called once and returns twice: once in the parent and once in the child

10

CS 3410 Fall 2024

Fork

● Duplicate but separate address

spaces: x has different values in the

parent and the child

● Shared files: both the parent and

child print their output because the

child inherits stdout from the parent

11

int main(int argc, char** argv) {

 int x = 1;

 pid_t pid = fork();

 if (pid < 0) { unix_error("fork error"); }

 if (!pid) {

 printf("child: x = %d\n", ++x);

 exit(0);

 }

 printf("parent: x = %d\n", --x);

 exit(0);

}

CS 3410 Fall 2024

Signals

● A signal is a small message that notifies a process that an event of some type
has occurred in the system

● Each signal type corresponds to some kind of system event
● Unix systems provide mechanisms for sending signals to processes through

process groups
○ Every process belongs to exactly one process group, which is identified

by a process group ID
○ The getpgrp function returns the process group ID of the current process
○ setpgid changes the process group of a process

● Processes send signals to other processes (including themselves) by calling the
kill function

12

CS 3410 Fall 2024

Worksheet

Complete parts 2 and 3

13

CS 3410 Fall 2024

Reaping Child Processes

● When a process terminates the kernel does not immediately remove it from the

system

○ The process is kept around in a terminated state until it is reaped by the

parent

○ A terminated process that has not yet been reaped is called a zombie

● A parent waits for its children to terminate or stop by calling the waitpid

function

14

CS 3410 Fall 2024

Reaping Child Processes

Optional options include WNOHANG and WUNTRACED:

● WNOHANG: returns 0 immediately if no child processes stopped/terminated

● WUNTRACED: waits until child stops or terminates

● WNOHANG | WUNTRACED:

○ If no child processes stopped/terminated, returns 0 immediately

○ Otherwise, returns PID of one of the stopped or terminated children.

15

CS 3410 Fall 2024

Checking the Exit Status of a Reaped Child

These functions accept status as their only argument:

● WEXITSTATUS: the exit status of child

● WIFEXITED checks if child is terminated

● WIFSIGNALED checks if child process exited with an uncaught signal

● WIFSTOPPED checks if child is currently stopped

● WTERMSIG: signal (as an int) that caused child process to terminate

● WSTOPSIG: signal (as an int) that caused child to stop

16

CS 3410 Fall 2024

Worksheet

Complete part 4

17

Assignment Tips

18

CS 3410 Fall 2024

A10 Tips

● The assignment write up has many useful links to the Linux Manual Pages
● Linux Manual Pages are your best friend: https://linux.die.net/man/
● Read each entry carefully and decide if it can help you!

19

https://linux.die.net/man/

20

Good Luck!

