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Agenda

1 RISC-V Calling Convention (Review)

2 Caches (Review)

2

3 Virtual Memory (Review)



RISC-V Calling Convention
(Review)
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RISC-V Calling Convention Review

● Arguments go in registers a0-a7
● Return values go in a0-a1
● Return address goes in ra
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● Callee-saved registers are: s0-s11
● Stack pointer is saved in sp

Prologue:

1. Adjust stack pointer
2. Save return address (ra)
3. Save callee-saved registers

(i.e. save whichever of s0-s11 are used)

Epilogue:

1. Restore saved registers
2. Restore return address (ra)
3. Restore stack pointer
4. Return to the caller using ret
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Example: leaf function (no function calls in function body)

Objective: Add 1 to the argument and return the result
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int addOne(int i) {
  return i + 1;
}
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Add One Example (Solution)

addOne:
# Prologue.
addi sp, sp, -8  # Push the stack frame.
sd   ra, 0(sp)   # Save return address.

# Body.
addi a0, a0, 1

# Epilogue.
ld   ra, 0(sp)   # Restore return address.
addi sp, sp, 8   # Pop the stack frame.
ret
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int addOne(int i) {
  return i + 1;
}



Caches (Review)
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Types of caches
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● Direct-mapped
● Fully-associative
● Set-associative

Today we’re only reviewing direct-mapped caches!



CS 3410 Fall 2025

Cache Parameters

● Tag: High-order bits used to compare addresses of the same cache mapping
● Index: Bits that determine where in the cache an address can go
● Offset: Low-order bits to select a byte within a cache block
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Tag Index Offset

Address breakdown:
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Direct Mapped Cache

Each address maps to exactly 1 cache block
ex) 4 byte direct mapped cache
● 4 blocks, 1 byte each
● Need 4 = 22 indices, so 2 index bits
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Increasing the block size for a Direct-Mapped cache
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- Each cache block now stores multiple bytes
- Use offset to access each byte
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Fully Associative Cache

Each address can map to any cache block
ex) 8 byte fully associative cache
● 4 blocks, 2-bytes each (use offset to access each byte)
● 4-bit addresses, no need for index bit
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Set Associative Cache

● Divide cache into sets; can store data in any way within a set
● Index is used to map addresses to a specific set, so not fully associative
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Can go in either way, so long as index matches!
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Cache Hits/Misses

● Cache Hit: data is in cache
● Cache Miss: data is not in cache

○ Have to retrieve data from memory -> extra time!
○ Cold/Compulsory miss: first ever access to a block 
○ Conflict miss: two hot address map to the same cache line

■ (esp. for direct-mapped caches)

● For the 4 byte direct mapped cache on the right, would the 
following loads be a hit or a miss? 
○ Load 1100?
○ Load 1101?
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Cache Hits/Misses

● Cache Hit: data is in cache
● Cache Miss: data is not in cache

○ Have to retrieve data from memory -> extra time!
○ Cold/Compulsory miss: first ever access to a block 
○ Conflict miss: two hot address map to the same cache line

■ (esp. for direct-mapped caches)

● For the 4 byte direct mapped cache on the right, would the 
following loads be a hit or a miss? 
○ Load 1100? Hit! (Valid bit is 1 and the tag matches)
○ Load 1101? Miss (Valid bit is 0)
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Computing Average Memory Access Time (AMAT)

- AMAT = access time + miss rate x miss penalty

○ miss rate = # cache misses / # cache accesses

○ miss penalty = extra time it takes to retrieve data from lower memory tiers

(e.g. if we miss an L1 cache, we have to go to L2 cache, etc.)
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Virtual Memory (Review)
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Good Luck!
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