
CS 3410 Lab 10.5 (Review)
Fall 2025

1

CS 3410 Fall 2025

Agenda

1 RISC-V Calling Convention (Review)

2 Caches (Review)

2

3 Virtual Memory (Review)

RISC-V Calling Convention
(Review)

3

CS 3410 Fall 2025

RISC-V Calling Convention Review

● Arguments go in registers a0-a7
● Return values go in a0-a1
● Return address goes in ra

4

● Callee-saved registers are: s0-s11
● Stack pointer is saved in sp

Prologue:

1. Adjust stack pointer
2. Save return address (ra)
3. Save callee-saved registers

(i.e. save whichever of s0-s11 are used)

Epilogue:

1. Restore saved registers
2. Restore return address (ra)
3. Restore stack pointer
4. Return to the caller using ret

CS 3410 Fall 2025

Example: leaf function (no function calls in function body)

Objective: Add 1 to the argument and return the result

5

int addOne(int i) {
 return i + 1;
}

CS 3410 Fall 2025

Add One Example (Solution)

addOne:
Prologue.
addi sp, sp, -8 # Push the stack frame.
sd ra, 0(sp) # Save return address.

Body.
addi a0, a0, 1

Epilogue.
ld ra, 0(sp) # Restore return address.
addi sp, sp, 8 # Pop the stack frame.
ret

6

int addOne(int i) {
 return i + 1;
}

Caches (Review)

7

CS 3410 Fall 2025

Types of caches

8

● Direct-mapped
● Fully-associative
● Set-associative

Today we’re only reviewing direct-mapped caches!

CS 3410 Fall 2025

Cache Parameters

● Tag: High-order bits used to compare addresses of the same cache mapping
● Index: Bits that determine where in the cache an address can go
● Offset: Low-order bits to select a byte within a cache block

9

Tag Index Offset

Address breakdown:

CS 3410 Fall 2025

Direct Mapped Cache

Each address maps to exactly 1 cache block
ex) 4 byte direct mapped cache
● 4 blocks, 1 byte each
● Need 4 = 22 indices, so 2 index bits

10

11

CS 3410 Fall 2025

Increasing the block size for a Direct-Mapped cache

12

- Each cache block now stores multiple bytes
- Use offset to access each byte

CS 3410 Fall 2025

Fully Associative Cache

Each address can map to any cache block
ex) 8 byte fully associative cache
● 4 blocks, 2-bytes each (use offset to access each byte)
● 4-bit addresses, no need for index bit

13

CS 3410 Fall 2025

Set Associative Cache

● Divide cache into sets; can store data in any way within a set
● Index is used to map addresses to a specific set, so not fully associative

14

Can go in either way, so long as index matches!

CS 3410 Fall 2025

Cache Hits/Misses

● Cache Hit: data is in cache
● Cache Miss: data is not in cache

○ Have to retrieve data from memory -> extra time!
○ Cold/Compulsory miss: first ever access to a block
○ Conflict miss: two hot address map to the same cache line

■ (esp. for direct-mapped caches)

● For the 4 byte direct mapped cache on the right, would the
following loads be a hit or a miss?
○ Load 1100?
○ Load 1101?

15

CS 3410 Fall 2025

Cache Hits/Misses

● Cache Hit: data is in cache
● Cache Miss: data is not in cache

○ Have to retrieve data from memory -> extra time!
○ Cold/Compulsory miss: first ever access to a block
○ Conflict miss: two hot address map to the same cache line

■ (esp. for direct-mapped caches)

● For the 4 byte direct mapped cache on the right, would the
following loads be a hit or a miss?
○ Load 1100? Hit! (Valid bit is 1 and the tag matches)
○ Load 1101? Miss (Valid bit is 0)

16

CS 3410 Fall 2025

Computing Average Memory Access Time (AMAT)

- AMAT = access time + miss rate x miss penalty

○ miss rate = # cache misses / # cache accesses

○ miss penalty = extra time it takes to retrieve data from lower memory tiers

(e.g. if we miss an L1 cache, we have to go to L2 cache, etc.)

17

Virtual Memory (Review)

18

19

20

21

22

Good Luck!

23

