CS 3410 Lab 10.5 (Review)

Fall 2025

‘ Cornell Bowers CIS
%% | Computer Science

CS 3410 Fall 2025

Agenda

1 RISC-V Calling Convention (Review)
Caches (Review)

3 Virtual Memory (Review)

Cornell Bowers GIS
Computer Science

RISC-V Calling Convention
(Review)

CS 3410 Fall 2025

RISC-V Calling Convention Review

e Arguments go in registers a@-a7
e Return values goin a@-al
e Return address goes in ra

e (Callee-saved registers are: s@-s11

e Stack pointer is saved in sp

Prologue:

1. Adjust stack pointer
2. Save return address (ra)

3. Save callee-saved registers
(i.e. save whichever of s@-s11 are used)

Epilogue:

1. Restore saved registers

2. Restore return address (ra)
3. Restore stack pointer

4. Return to the caller using ret

Cornell Bowers C1S
Computer Science

CS 3410 Fall 2025

Example: leaf function (no function calls in function body)

Objective: Add 1 to the argument and return the result

Prologue:

1. Adjust stack pointer
2. Save return address (ra)

i nt ad done (i nt i) { 3. Save callee-saved registers

return i + 1;

Epilogue:

¥

1. Restore saved registers

2. Restore return address (ra)
3. Restore stack pointer

4. Return to the caller using ret

Cornell Bowers C1S
Computer Science

CS 3410 Fall 2025

Add One Example (Solution)

int addOne(int i) {
return i + 1;

¥

Cornell Bowers C1S
Computer Science

addOne:
Prologue.
addi sp, sp, -8 # Push the stack frame.
sd ra, O(sp) # Save return address.

Body.
addi ao@, a0, 1

Epilogue.

1d ra, O(sp) # Restore return address.
addi sp, sp, 8 # Pop the stack frame.
ret

Caches (Review)

CS 3410 Fall 2025
Types of caches
e Direct-mapped
e F[ully-associative

e Set-associative

Today we’re only reviewing direct-mapped caches!

Cornell Bowers C1S
Computer Science

CS 3410 Fall 2025
Cache Parameters

e [ag: High-order bits used to compare addresses of the same cache mapping
e Index: Bits that determine where in the cache an address can go
e Offset: Low-order bits to select a byte within a cache block

Address breakdown:

Tag Index Offset

Cornell Bowers CIS
Computer Science

CS 3410 Fall 2025

Direct Mapped Cache

Each address maps to exactly 1 cache block

ex) 4 byte direct mapped cache
e 4 blocks, 1 byte each

e Need 4 = 22 indices, so 2 index bits

index
11
10

00

Cornell Bowers CIS
Computer Science

CACHE

tag| index

00

@]

00

ve)

00

b

1101

MEMORY

addr
1111
1110
1101
1100
1011
1010
10
1000
0111
0110
010
0100
0011
0010
00
0000

@Ol Mmool —|«|X|r =20 1J|EI

10

The access algorithm

CACHE
index Vv tag | index
11 0 00 D
10|l 0o o0 C 1101
0 00 B
00 0 00 A

@ Split the address between tag t and index 1

@ Check the entry i

@ Is it valid? If no, cache miss!

@ If the bit is valid, then is it the tag t? If no, cache miss!

@ Otherwise, cache hit!

addr
1111
1110
1

1100
1011
1010
10

1000
0111
0110
01

0100
0011
0010
00

0000

MEMORY

>UJODm'nG)IC-7<r—§ZO'UE

11

CS 3410 Fall 2025

Increasing the block size for a Direct-Mapped cache

- Each cache block now stores multiple bytes
- Use offset to access each byte

tag | index | offset

XXXX CACHE
index V | Tag Data
11 0 X X|X
@ Check the index in the $ (cache) 1_0 0 X X | X
0 X X|X
@ Check the tag 00 0 X X | X

@ Check the valid bit

Cornell Bowers U1S
Computer Science

CS 3410 Fall 2025
Fully Associative Cache

Each address can map to any cache block

ex) 8 byte fully associative cache
e 4 blocks, 2-bytes each (use offset to access each byte)
e 4-bit addresses, no need for index bit

CACHE

ag Data tag|offset
010 E|F 1101

000 AlB
001 c|p
011 G|H

o|lo|o|o

Any address, any entry
4-bit addresses
2-byte blocks

Cornell Bowers CIS
Computer Science

MEMORY

addr
1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

>mﬁom'nmI—hxl-ZZO'UH

13

CS 3410 Fall 2025
Set Associative Cache

e Divide cache into sets; can store data in any way within a set
e Index is used to map addresses to a specific set, so not fully associative

tag|index|offset
1100

Can go in either way, so long as index matches!

index

[Inl-lln—
0lol x [xx J{oJ] X | XX |

Cornell Bowers CIS
Computer Science

14

CS 3410 Fall 2025

Cache Hits/Misses

e (Cache Hit: data is in cache CACHE
e (Cache Miss: data is not in cache UL V. Tag Data
o Have to retrieve data from memory -> extra time! 11 | 0 XX X
o Cold/Compulsory miss: first ever access to a block 10 | 0 XX X
o Conflict miss: two hot address map to the same cache line 0 XX X
m (esp. for direct-mapped caches) 00 | 1 11 M
e Forthe 4 byte direct mapped cache on the right, would the
following loads be a hit or a miss?
o Load 1100?
o Load 1101? taglindex
1101
Cornell Bowers CIS 15

Computer Science

CS 3410 Fall 2025

Cache Hits/Misses

e (Cache Hit: data is in cache CACHE
e (Cache Miss: data is not in cache index
o Have to retrieve data from memory -> extra time! 11 | 0 XX X
o Cold/Compulsory miss: first ever access to a block 10 | 0 XX X
o Conflict miss: two hot address map to the same cache line 0 XX X
m (esp. for direct-mapped caches) 00 | 1 11 M
e Forthe 4 byte direct mapped cache on the right, would the
following loads be a hit or a miss?
o Load 11007 Hit! (Valid bit is 1 and the tag matches)
o Load 11017 Miss (Valid bit is 0) tag|index
1101
Cornell Bowers CIS 16

Computer Science

CS 3410 Fall 2025
Computing Average Memory Access Time (AMAT)

- AMAT = access time + miss rate x miss penalty
o miss rate = # cache misses / # cache accesses
o mIiss penalty = extra time it takes to retrieve data from lower memory tiers

(e.g. if we miss an L1 cache, we have to go to L2 cache, etc.)

Cornell Bowers C1S
Computer Science

17

Virtual Memory (Review)

Big Picture: Virtual Memory

A‘

Process 1 —bz -
1 C

0 D

Give each process an illusion that it has exclusive
access to entire main memory

3 E

Process 2 gu g -
1 G

0 H

How Do We Create the lllusion?

O = NW

O NW

A map of virtual
address to physical
addresses

The memory
management unit
(MMU) takes care of
the mapping

I I IOI n I U

O R N W b U1 OO N OO W

How Do We Create the lllusion?

O NW

O NW

Process 1 wants to
access data C

Process 1 thinks it's
stored at addr 1

The addr is intercepted
by the MMU

MMU knows this is a
virtual address

MMU looks at the
mapping

The virtual addr 1 is
physical addr 9

Data at addr 9 is sent to
physical memory

Data is indeed C

O, N WS UL N W

The virtual-to-physical address mapping

* The CPU generates a virtual address when running a program

* The OS wants to give each process the illusion of a contiguous, linear memory
space

» To do this, the CPU uses a page table, which is a “map” maintained by the OS that

links virtual pages to physical frames

22

Good Luck!

