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1 RISC-V Calling Convention (Review)
Caches (Review)

3 Virtual Memory (Review)
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RISC-V Calling Convention Review

e Arguments go in registers a@-a7
e Return values goin a@-al
e Return address goes in ra

e (Callee-saved registers are: s@-s11

e Stack pointer is saved in sp

Prologue:

1. Adjust stack pointer
2. Save return address (ra)

3. Save callee-saved registers
(i.e. save whichever of s@-s11 are used)

Epilogue:

1. Restore saved registers

2. Restore return address (ra)
3. Restore stack pointer

4. Return to the caller using ret
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Example: leaf function (no function calls in function body)

Objective: Add 1 to the argument and return the result

Prologue:

1. Adjust stack pointer
2. Save return address (ra)

i nt ad done ( i nt i ) { 3. Save callee-saved registers

return i + 1;

Epilogue:

¥

1. Restore saved registers

2. Restore return address (ra)
3. Restore stack pointer

4. Return to the caller using ret
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Add One Example (Solution)

int addOne(int i) {
return i + 1;

¥
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addOne:
# Prologue.
addi sp, sp, -8 # Push the stack frame.
sd ra, O(sp) # Save return address.

# Body.
addi ao@, a0, 1

# Epilogue.

1d ra, O(sp) # Restore return address.
addi sp, sp, 8 # Pop the stack frame.
ret
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Types of caches
e Direct-mapped
e F[ully-associative

e Set-associative

Today we’re only reviewing direct-mapped caches!
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Cache Parameters

e [ag: High-order bits used to compare addresses of the same cache mapping
e Index: Bits that determine where in the cache an address can go
e Offset: Low-order bits to select a byte within a cache block

Address breakdown:

Tag Index Offset
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Direct Mapped Cache

Each address maps to exactly 1 cache block

ex) 4 byte direct mapped cache
e 4 blocks, 1 byte each

e Need 4 = 22 indices, so 2 index bits

index
11
10

00
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CACHE

tag| index

00

@]

00

ve)

00

b

1101

MEMORY

addr
1111
1110
1101
1100
1011
1010
10
1000
0111
0110
010
0100
0011
0010
00
0000

@Ol Mmool —|«|X|r =20 1J|EI

10



The access algorithm

CACHE
index Vv tag | index
11 0 00 D
10|l 0o o0 C 1101
0 00 B
00 0 00 A

@ Split the address between tag t and index 1

@ Check the entry i

@ Is it valid? If no, cache miss!

@ If the bit is valid, then is it the tag t? If no, cache miss!

@ Otherwise, cache hit!

addr
1111
1110
1

1100
1011
1010
10

1000
0111
0110
01

0100
0011
0010
00

0000

MEMORY

>UJODm'nG)IC-7<r—§ZO'UE
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Increasing the block size for a Direct-Mapped cache

- Each cache block now stores multiple bytes
- Use offset to access each byte

tag | index | offset

XXXX CACHE
index V | Tag Data
11 0 X X|X
@ Check the index in the $ (cache) 1_0 0 X X | X
0 X X|X
@ Check the tag 00 0 X X | X

@ Check the valid bit
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Fully Associative Cache

Each address can map to any cache block

ex) 8 byte fully associative cache
e 4 blocks, 2-bytes each (use offset to access each byte)
e 4-bit addresses, no need for index bit

CACHE

ag Data tag|offset
010 E|F 1101

000 AlB
001 c|p
011 G|H

o|lo|o|o

Any address, any entry
4-bit addresses
2-byte blocks
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MEMORY

addr
1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

>mﬁom'nmI—hxl-ZZO'UH
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Set Associative Cache

e Divide cache into sets; can store data in any way within a set
e Index is used to map addresses to a specific set, so not fully associative

tag|index|offset
1100

Can go in either way, so long as index matches!

index

[Inl-lln—
0lol x [ xx J{oJ] X | XX |
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Cache Hits/Misses

e (Cache Hit: data is in cache CACHE
e (Cache Miss: data is not in cache UL V. Tag Data
o Have to retrieve data from memory -> extra time! 11 | 0 XX X
o Cold/Compulsory miss: first ever access to a block 10 | 0 XX X
o Conflict miss: two hot address map to the same cache line 0 XX X
m (esp. for direct-mapped caches) 00 | 1 11 M
e Forthe 4 byte direct mapped cache on the right, would the
following loads be a hit or a miss?
o Load 1100?
o Load 1101? taglindex
1101
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Cache Hits/Misses

e (Cache Hit: data is in cache CACHE
e (Cache Miss: data is not in cache index
o Have to retrieve data from memory -> extra time! 11 | 0 XX X
o Cold/Compulsory miss: first ever access to a block 10 | 0 XX X
o Conflict miss: two hot address map to the same cache line 0 XX X
m (esp. for direct-mapped caches) 00 | 1 11 M
e Forthe 4 byte direct mapped cache on the right, would the
following loads be a hit or a miss?
o Load 11007 Hit! (Valid bit is 1 and the tag matches)
o Load 11017 Miss (Valid bit is 0) tag|index
1101
Cornell Bowers CIS 16

Computer Science



CS 3410 Fall 2025
Computing Average Memory Access Time (AMAT)

- AMAT = access time + miss rate x miss penalty
o miss rate = # cache misses / # cache accesses
o mIiss penalty = extra time it takes to retrieve data from lower memory tiers

(e.g. if we miss an L1 cache, we have to go to L2 cache, etc.)
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Big Picture: Virtual Memory

A‘

Process 1 —bz -
1 C

0 D

Give each process an illusion that it has exclusive
access to entire main memory

3 E

Process 2 gu g -
1 G

0 H




How Do We Create the lllusion?

O = NW

O NW

A map of virtual
address to physical
addresses

The memory
management unit
(MMU) takes care of
the mapping
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How Do We Create the lllusion?

O NW

O NW

Process 1 wants to
access data C

Process 1 thinks it's
stored at addr 1

The addr is intercepted
by the MMU

MMU knows this is a
virtual address

MMU looks at the
mapping

The virtual addr 1 is
physical addr 9

Data at addr 9 is sent to
physical memory

Data is indeed C

O, N WS UL N W



The virtual-to-physical address mapping

* The CPU generates a virtual address when running a program

* The OS wants to give each process the illusion of a contiguous, linear memory
space

» To do this, the CPU uses a page table, which is a “map” maintained by the OS that

links virtual pages to physical frames
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Good Luck!



