
CS 3410 Fall 2025

Lab 11 Worksheet: Concurrent Hash Tables

1. Atomic Increment
Part 1A
Study the function below, which atomically adds 1 to an integer variable in memory and returns its original value.

int atomic_increment(volatile int* var) {

 int prev;

 __asm__ volatile(

 "1: lr.w.aqrl %0, (%1)\n"

 " addi %0, %0, 1\n"

 " sc.w.aqrl t0, %0, (%1)\n"

 " bne t0, zero, 1b\n" // Jump to label 1 - retry until sc succeeds

 : "=&r"(prev)

 : "r"(var)

 : "t0", "memory");

 return prev;

}

Under what conditions will store-conditional (sc) fail? When will it succeed?

Part 1B
Using "ordinary" loads and stores cannot guarantee that memory updates will be visible to other threads in order.
Study the function below.

int simple_increment(volatile int* var) {

 int prev;

 __asm__ volatile(

 "lw %0, (%1)\n"

 "addi %0, %0, 1\n"

 "sw %0, (%1)\n"

 : "=&r"(prev)

 : "r"(var)

 : "t0", "memory");

 return prev;

}

Two processors, A and B, are running this program concurrently.
Give an example execution order that results in an incorrect result (i.e. The result is not prev + 2.)

CS 3410 Fall 2025

Lab 11 Worksheet: Concurrent Hash Tables

Part 1C
Study the partially implemented function below, which implements a Compare-and-Swap (CAS) operation that
atomically compares the current value of an integer with an expected value. If they are equal, it updates the value of
the integer to a new value. Complete the function below using LR/SC.

bool compare_and_swap(volatile int* var, int old, int new) {

 int prev_old;

 int SUCCESS = (a) ;

 int FAIL = 1;

 __asm__ volatile(

 "1: (b) %0, (%1)\n"

 " bne %0, %2, 2f\n"

 " (c) t0, %3, (%1)\n"

 " bne t0, zero, 1b\n"

 " li %0, (d) \n"

 " j 3f\n"

 "2: li %0, (e) \n"

 "3: \n"

 : "=&r"(prev_old)

 : "r"(var), "r"(old), "r"(new)

 : "t0", "memory");

 return prev_old == (f) ;

}

Explain briefly why CAS operations are used in concurrent programming.

2. Locks
Part 2A
What is the purpose of a lock in a multithreaded program?

CS 3410 Fall 2025

Lab 11 Worksheet: Concurrent Hash Tables

Part 2B
Study the function below which adds 1 to the counter.

int counter = 0;

int lock = 0;

void simple() {

 if (!lock) { lock = 1; counter++; lock = 0; }

}

Describe a situation in which the function, which uses an if statement, leads to two threads entering the critical
section at the same time. How can this be avoided?

Part 2C
When a thread is “spinning,” what is it actually doing?

A.​ Sleeping until the lock is free

B.​ Checking again and again in a loop

C.​ Sending a signal to the OS

3. Spinlocks Reasoning
Suppose we have two threads, A and B, sharing this code:

spin_lock(&lock);

counter = counter + 1;

spin_unlock(&lock);

What could go wrong if we remove the spinlock?

What does the spinlock guarantee about the variable counter?

CS 3410 Fall 2025

Lab 11 Worksheet: Concurrent Hash Tables

4. Condition Variables
Study the function below, which attempts to block until counter >= threshold.
Note: you are not allowed to use pthread.h in A11. Instead, you will build your own implementation of spinlocks and
condition variables.

#include <pthread.h>

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

int counter = 0;

int threshold = 5;

void wait_for_condition() {

 pthread_mutex_lock(&lock);

 int before = counter;

 if (counter < threshold) { pthread_cond_wait(&cond, &lock); }

 int after = counter;

 printf("Before wait: %d, After wait: %d\n", before, after);

 pthread_mutex_unlock(&lock);

}

Now, another thread sets counter to 5:

void increment() {

 pthread_mutex_lock(&lock);

 counter = 5;

 pthread_cond_signal(&cond);

 pthread_mutex_unlock(&lock);

}

Part 4A
Assume no other threads call pthread_cond_signal.
Is it necessarily true that wait_for_condition blocks until counter >= threshold? Explain briefly.

Part 4B
Regarding the print statement, are the values of before and after necessarily different? Explain briefly.

Part 4C
If you answered no to previous parts, suggest how wait_for_condition could be modified to ensure before and
after are different.

