CS 3410 Lab 11

Fall 2025

Cornell Bowers C1S
Computer Science

&““"“’e,
O

o7 %)

V| <

NCIP)
00 o)
QEp >

CS 3410 Fall 2025

Agenda

Inline Assembly
Spinlocks
Condition Variables
pthreads

A11 Tips

Cornell Bowers CIS
Computer Science

Inline Assembly

CS 3410 Fall 2025

Inline Assembly

__asm__ volatile(
// Assembly instructions
: // Output operands
: // Input operands
: // Clobber list

: // Goto list
)s

Cornell Bowers CIS
Computer Science

The volatile keyword instructs the
compiler to avoid "optimizing your code
away," so the instructions appear verbatim
in the compiled program.

CS 3410 Fall 2025

Inline Assembly: Operands

Placeholders
1 int a_plus 3b(int a, int b) {

) int result; e %0 refers to the first operand that appears, In this case, result.
3 __asm__ volatile(e %1 isthe second operand, a.
n "s11i te, %2, 1\n" e %2 is the third operand, b.
5 "addi te, te, %2\n"
. Output Operand
6 "addi %@, to, %1\n"
7 : "=r" (result) e =r (result) says that the variable result should be placed in
8 : "r" (a), "r" (b) a register so the assembly code can write to it
9 : "te");
Input Operand
10 return result;
11 } e "r" (a), "r" (b) makesthe arguments a and b available in
reqisters.

Cornell Bowers CIS
Computer Science

CS 3410 Fall 2025

Inline Assembly: Operands

1 int a_plus 3b(int a, int b) { . . .
Beyond r and =, some other basic constraints and constraint

2 int result; -

3 asm_ volatile(modifiers are...

4 "slli te, %2, 1\n" e m: The operand lives in memory.

5 "addi te, te, %2\n" e f: The operand lives in a floating point register.

6 "addi %0, t@, %1\n" e 1i:The operand is a constant integer (immediate).

7 "=r" (result) e F: The operand is a constant floating point number.
8 "r" (a), "r" (b) e +: The operand is both read from and written to.

9 "t0"); e & The operand is written to before all (note: not any)
10 return result; operands have been read.

1 }

Cornell Bowers CIS
Computer Science

CS 3410 Fall 2025

Inline Assembly: Clobber List + Goto List

Clobber List
1 int a_plus 3b(int a, int b) {
2 int result; e This list describes to the compiler what the assembly code
3 __asm__ volatile((might) overwrite.
4 "s11i te, %2, 1\n" e Inthis case, we have t0 in the clobber list as the assembly
: code write over to
5 "addi te, te, %2\n" o , , o
e This list can contain the special name memory to indicate that
6 "addi %@, to, %1\n" .
the assembly writes to memory.
7 : "=r" (result)
8 2 "r" (a), "r" (b) Goto list
9 : "te"); , _ _
e Informs the compiler of the list of goto labels used in the
10 return result;
assembly.
11} e \We omit the goto list because our assembly does not use
any labels.

Cornell Bowers CIS
Computer Science

Spinlocks

CS 3410 Fall 2025
Spinlocks

A spinlock is a type of lock. When a thread tries to acquire
a spinlock, it “spins” until the lock becomes available.

Pseudocode

1. Check if the shared resource is
available. If it isn’t, repeat step 1.

2. Try to acquire the shared resource. If
unsuccessful (i.e., because another
thread acquired it first), repeat step 1.

Cornell Bowers C1S
Computer Science

CS 3410 Fall 2025

LR and SC Atomic Instructions

LR (load-reserved) SC (store-conditional)

Usage: 1r.w.aqrl rd, (rsi) Usage: sc.w.aqrl rd, rs2, (rsl)

Loads a 32-bit word from the address e Attempts to write the value in rs2 to the
in register rs1 into register rd address in rsil

“Reserves” the memory address at e Only succeeds if this thread has a

rsi, tracking whether any other thread reservation on this address

writes to this address e If successful, writes zero to rd; otherwise,
A “reservation” is broken if another writes a non-zero code

thread writes to this address

LR and SC are useful for implementing spinlocks in RISC-V!

Cornell Bowers C1S
Computer Science

10

Monitors

11

CS 3410 Fall 2025

Condition Variables

1 void print_message(int* lock, int* cond, char*
message, int ready) {
spin_lock(lock);
// Wait until the message is ready
while (!ready) {
wait(lock, cond);

¥

// Print the now-ready message!

»

printf(“%s”, message);

O 00 N o Uuu A W N

spin_unlock(lock);

10 }

Cornell Bowers CIS
Computer Science

A condition variable is a concurrency
mechanism that allow threads to wait for
some condition to become true

e A thread waits on a condition cond
until another thread wakes it up

e A thread can broadcast to a
condition cond to wake up all
threads that are waiting on cond

12

CS 3410 Fall 2025

futex

In Linux, the futex(uint32_t* uaddr, int op, ...) system call can be
used to facilitate condition variables

e uaddr isthe address of the condition variable
e op is the operation to be performed by the futex call (e.g., FUTEX_WAIT,
FUTEX_WAKE)

Cornell Bowers C1S
Computer Science

13

othreads

CS 3410 Fall 2025

pthreads

pthreads is a Unix standard library that provides implementations for
thread management, synchronization, and conditioning in C

PTHREAD_MUTEX_INITIALIZER Initializes pthread_mutex_t lock.
PTHREAD_COND_INITIALIZER Initializes pthread_cond_t condition variable.
pthread mutex_lock(pthread mutex_t lock) Acquire the lock lock.

pthread mutex_unlock(pthread mutex t lock) | Release the lock lock.

pthread cond wait(pthread cond t cond, Release the lock 1ock and wait on the condition variable cond. On
pthread mutex_t lock) return, the calling thread is guaranteed to have reacquired lock.
pthread cond signal(pthread cond t cond) Wakes up at least one thread waiting on the condition variable cond.

Cornell Bowers C1S 15
Computer Science

A11 Tips

CS 3410 Fall 2025

A11 Tips

e Inyour rv container, you can call grep "#define FUTEX_ " /usr/include/linux/futex.h
to find the futex opcodes
e More tips can be found in the A11 instructions!

Cornell Bowers CIS
Computer Science

17

