
CS 3410 Lab 11
Fall 2025

1

CS 3410 Fall 2025

Agenda

1 Inline Assembly

2

2 Spinlocks

3 Condition Variables

4 pthreads

5 A11 Tips

Inline Assembly

3

CS 3410 Fall 2025

Inline Assembly

4

__asm__ volatile(

 // Assembly instructions

 : // Output operands

 : // Input operands

 : // Clobber list

 : // Goto list
);

4

The volatile keyword instructs the
compiler to avoid "optimizing your code
away," so the instructions appear verbatim
in the compiled program.

CS 3410 Fall 2025

Inline Assembly: Operands

55

Placeholders

● %0 refers to the first operand that appears, In this case, result.
● %1 is the second operand, a.
● %2 is the third operand, b.

Output Operand

● =r (result) says that the variable result should be placed in
a register so the assembly code can write to it

Input Operand

● "r" (a), "r" (b) makes the arguments a and b available in
registers.

1 int a_plus_3b(int a, int b) {

2 int result;

3 __asm__ volatile(

4 "slli t0, %2, 1\n"

5 "addi t0, t0, %2\n"

6 "addi %0, t0, %1\n"

7 : "=r" (result)

8 : "r" (a), "r" (b)

9 : "t0");

10 return result;

11 }

CS 3410 Fall 2025

Inline Assembly: Operands

66

Beyond r and =, some other basic constraints and constraint
modifiers are…

● m: The operand lives in memory.
● f: The operand lives in a floating point register.
● i: The operand is a constant integer (immediate).
● F: The operand is a constant floating point number.
● +: The operand is both read from and written to.
● &: The operand is written to before all (note: not any)

operands have been read.

1 int a_plus_3b(int a, int b) {

2 int result;

3 __asm__ volatile(

4 "slli t0, %2, 1\n"

5 "addi t0, t0, %2\n"

6 "addi %0, t0, %1\n"

7 : "=r" (result)

8 : "r" (a), "r" (b)

9 : "t0");

10 return result;

11 }

CS 3410 Fall 2025

Inline Assembly: Clobber List + Goto List

77

Clobber List

● This list describes to the compiler what the assembly code
(might) overwrite.

● In this case, we have t0 in the clobber list as the assembly
code write over t0

● This list can contain the special name memory to indicate that
the assembly writes to memory.

Goto list

● Informs the compiler of the list of goto labels used in the
assembly.

● We omit the goto list because our assembly does not use
any labels.

1 int a_plus_3b(int a, int b) {

2 int result;

3 __asm__ volatile(

4 "slli t0, %2, 1\n"

5 "addi t0, t0, %2\n"

6 "addi %0, t0, %1\n"

7 : "=r" (result)

8 : "r" (a), "r" (b)

9 : "t0");

10 return result;

11 }

Spinlocks

8

CS 3410 Fall 2025

Spinlocks

9

Pseudocode

1. Check if the shared resource is
available. If it isn’t, repeat step 1.

2. Try to acquire the shared resource. If
unsuccessful (i.e., because another
thread acquired it first), repeat step 1.

9

A spinlock is a type of lock. When a thread tries to acquire
a spinlock, it “spins” until the lock becomes available.

CS 3410 Fall 2025

LR and SC Atomic Instructions

1010

LR (load-reserved)

● Usage: lr.w.aqrl rd, (rs1)
● Loads a 32-bit word from the address

in register rs1 into register rd
● “Reserves” the memory address at

rs1, tracking whether any other thread
writes to this address

● A “reservation” is broken if another
thread writes to this address

SC (store-conditional)

● Usage: sc.w.aqrl rd, rs2, (rs1)
● Attempts to write the value in rs2 to the

address in rs1
● Only succeeds if this thread has a

reservation on this address
● If successful, writes zero to rd; otherwise,

writes a non-zero code

LR and SC are useful for implementing spinlocks in RISC-V!

Monitors

11

CS 3410 Fall 2025

Condition Variables

1212

1 void print_message(int* lock, int* cond, char*

 message, int ready) {

2 spin_lock(lock);

3 // Wait until the message is ready

4 while (!ready) {

5 wait(lock, cond);

6 }

7 // Print the now-ready message!

8 printf(“%s”, message);

9 spin_unlock(lock);

10 }

A condition variable is a concurrency
mechanism that allow threads to wait for
some condition to become true

● A thread waits on a condition cond
until another thread wakes it up

● A thread can broadcast to a
condition cond to wake up all
threads that are waiting on cond

CS 3410 Fall 2025

futex

1313

In Linux, the futex(uint32_t* uaddr, int op, …) system call can be
used to facilitate condition variables

● uaddr is the address of the condition variable
● op is the operation to be performed by the futex call (e.g., FUTEX_WAIT,

FUTEX_WAKE)

pthreads

14

CS 3410 Fall 2025

pthreads

1515

pthreads is a Unix standard library that provides implementations for
thread management, synchronization, and conditioning in C

PTHREAD_MUTEX_INITIALIZER Initializes pthread_mutex_t lock.

PTHREAD_COND_INITIALIZER Initializes pthread_cond_t condition variable.

pthread_mutex_lock(pthread_mutex_t lock) Acquire the lock lock.

pthread_mutex_unlock(pthread_mutex_t lock) Release the lock lock.

pthread_cond_wait(pthread_cond_t cond,

pthread_mutex_t lock)
Release the lock lock and wait on the condition variable cond. On
return, the calling thread is guaranteed to have reacquired lock.

pthread_cond_signal(pthread_cond_t cond) Wakes up at least one thread waiting on the condition variable cond.

A11 Tips

16

CS 3410 Fall 2025

A11 Tips

● In your rv container, you can call grep "#define FUTEX_" /usr/include/linux/futex.h
to find the futex opcodes

● More tips can be found in the A11 instructions!

17

