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RISC-V 64

32-bit (4 byte) instructions

32 registers x0 - x31. Register names:

X0 — zero : (always stores value of 0)
x10 -x17 — a0 - ar

X5, X0, X7, x28 - x31 — 10 - t6

X8, X9, x18 - x27 — sO - s11

64-bit memory
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Arithmetic Instructions

- addrd, rs1, rs2 exec: reg[rd] <= reg[rs1] + reg|rs2]

“Add values in source registers rs1 and rs2, writeback to destination register rd”

- addi rd, rs1, constant reg[rd] <= reg[rs1] + constant

“Add value in source reg. rs1 to constant, writeback to destination register rd”

- subrd, rs1, rs2 reg[rd] <= reg[rs1] - reg[rs2]
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Multiplication & Division!

- mulrd, rs1, rs2 reg[rd] <= reg[rs1] * reg[rs2]
- divrd, rs1, rs2 reg[rd] <= reg[rs1] / reg]rs2]
Use shift operations when multiplying/dividing by powers of 2!
- sllird, rs1, shamt reg[rd] <= reg[rs1] << shamt
- srlird, rs1, shamt reg[rd] <= reg[rs1] >> u shamt
- sraird, rs1, shamt reg[rd] <= reg[rs1] >> s shamt

Use slli to multiply by powers of 2.

Use srli to divide unsigned numbers, srai to divide signed numbers.
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Example: Multiplication

Assume the following register
allocation:

- X — x5
-y > X6
- Z > X7
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Z=X*y*2;

Assembly:
mul X7, x5, x6

slli x7, x7, 1
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Memory Access: Load and Store!

Load word (32 bit): Iw rd, offset(rs1)
Store word (32 bit): sw rs2, offset(rs1)

Second operand is the address.
- offset(rs1): get value from register rs1, add the constant offset to it — this
is the address to read to / write from

Iw: puts value at address offset(rs1) into register rd.
sw: stores value in register rs2 at address offset(rs1).
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Example: Array access

Assume:

A has been properly
initialized in memory
@A — x5

Yy — X6

X7, x8 are for temp
values
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C:

intA={1,2, 3, 58, 0};
A[3] = 69;

y =Al4] + 42;

Assembly:
addi x7, x0, 69
sw X7, 12(x5)
lw x8, 16(x5)
addi x6, x8, 42



CS 3410 Fall 2025
Control Flow: Jump & Branch

Branch If Equal: beq rs1, rs2, some_label

Branch instructions: choose between moving on to next instruction or jumping to
label.

- beq: if rs1 equals rs2, then jump to location some_label
- Other conditional branches: bne (branch if not equal), blt (branch if less
than), bge (branch if greater than or equal to)

Jump: j some label

- j: jump to location of some_label
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Resources: (Instruction Lookup)
- RISC-V reference card

- Exhaustive reference sheet

= |SA manual
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https://llp.mit.edu/6190/_static/S24A/resources/references/riscv_isa_reference.pdf
https://www.cs.cornell.edu/courses/cs3410/2024fa/assignments/cpusim/riscv-instructions.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

Worksheet
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Some exercises:
- Translating C — assembly
- Translating assembly — C

Tips:
- Consult the RISC-V reference card and ISA manual!
- After writing your assembly file, run it with the 3410 RISC-V Interpreter
- Initialize register values in the register file display on right
- Reset to load code, Step one instruction, or Run all instructions
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https://llp.mit.edu/6190/_static/S24A/resources/references/riscv_isa_reference.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/#memory-table

Assignment Tips
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Task 1:
Pay special attention to the assumptions (register allocation for variables,

which registers for temp. values, etc.) that we list.
You are not graded on tests! But for your own sake, jot down some test
cases to run on the interpreter:

- Different initializations of registers

- Expected register state after execution

Task 2:
Once you’ve written the function in C, try testing it yourself with ‘'main’!
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