CS 3410 Lab 6

Fall 2025

Cornell Bowers C1S
Computer Science




Agenda

RISC-V Recap
Lab Task



RISC-V

Recap



CS 3410 Fall 2025

RISC-V 64

32-bit (4 byte) instructions

32 registers x0 - x31. Register names:

X0 — zero : (always stores value of 0)
x10 -x17 — a0 - ar

X5, X0, X7, x28 - x31 — 10 - t6

X8, X9, x18 - x27 — sO - s11

64-bit memory

Cornell Bowers CIS
Computer Science

XLEN-1

x0 / zero

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19

x20

x21

x22

x23

x24

x25

x26

x27

x28

x29

x30

x31

XLEN




CS 3410 Fall 2025
Arithmetic Instructions

- addrd, rs1, rs2 exec: reg[rd] <= reg[rs1] + reg|rs2]

“Add values in source registers rs1 and rs2, writeback to destination register rd”

- addi rd, rs1, constant reg[rd] <= reg[rs1] + constant

“Add value in source reg. rs1 to constant, writeback to destination register rd”

- subrd, rs1, rs2 reg[rd] <= reg[rs1] - reg[rs2]

Cornell Bowers C1S
Computer Science




CS 3410 Fall 2025

Multiplication & Division!

- mulrd, rs1, rs2 reg[rd] <= reg[rs1] * reg[rs2]
- divrd, rs1, rs2 reg[rd] <= reg[rs1] / reg]rs2]
Use shift operations when multiplying/dividing by powers of 2!
- sllird, rs1, shamt reg[rd] <= reg[rs1] << shamt
- srlird, rs1, shamt reg[rd] <= reg[rs1] >> u shamt
- sraird, rs1, shamt reg[rd] <= reg[rs1] >> s shamt

Use slli to multiply by powers of 2.

Use srli to divide unsigned numbers, srai to divide signed numbers.

Cornell Bowers C1S
Computer Science




CS 3410 Fall 2025

Example: Multiplication

Assume the following register
allocation:

- X — x5
-y > X6
- Z > X7

Cornell Bowers C1S
Computer Science

Z=X*y*2;

Assembly:
mul X7, x5, x6

slli x7, x7, 1



CS 3410 Fall 2025

Memory Access: Load and Store!

Load word (32 bit): Iw rd, offset(rs1)
Store word (32 bit): sw rs2, offset(rs1)

Second operand is the address.
- offset(rs1): get value from register rs1, add the constant offset to it — this
is the address to read to / write from

Iw: puts value at address offset(rs1) into register rd.
sw: stores value in register rs2 at address offset(rs1).

Cornell Bowers C1S
Computer Science




CS 3410 Fall 2025
Example: Array access

Assume:

A has been properly
initialized in memory
@A — x5

Yy — X6

X7, x8 are for temp
values

Cornell Bowers C1S
Computer Science

C:

intA={1,2, 3, 58, 0};
A[3] = 69;

y =Al4] + 42;

Assembly:
addi x7, x0, 69
sw X7, 12(x5)
lw x8, 16(x5)
addi x6, x8, 42



CS 3410 Fall 2025
Control Flow: Jump & Branch

Branch If Equal: beq rs1, rs2, some_label

Branch instructions: choose between moving on to next instruction or jumping to
label.

- beq: if rs1 equals rs2, then jump to location some_label
- Other conditional branches: bne (branch if not equal), blt (branch if less
than), bge (branch if greater than or equal to)

Jump: j some label

- j: jump to location of some_label

Cornell Bowers C1S
Computer Science




CS 3410 Fall 2025

Resources: (Instruction Lookup)
- RISC-V reference card

- Exhaustive reference sheet

= |SA manual

Cornell Bowers CIS
Computer Science



https://llp.mit.edu/6190/_static/S24A/resources/references/riscv_isa_reference.pdf
https://www.cs.cornell.edu/courses/cs3410/2024fa/assignments/cpusim/riscv-instructions.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

Worksheet



CS 3410 Fall 2025

Some exercises:
- Translating C — assembly
- Translating assembly — C

Tips:
- Consult the RISC-V reference card and ISA manual!
- After writing your assembly file, run it with the 3410 RISC-V Interpreter
- Initialize register values in the register file display on right
- Reset to load code, Step one instruction, or Run all instructions

Cornell Bowers CIS
Computer Science



https://llp.mit.edu/6190/_static/S24A/resources/references/riscv_isa_reference.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://www.cs.cornell.edu/courses/cs3410/2019sp/riscv/interpreter/#memory-table

Assignment Tips



CS 3410 Fall 2025

Task 1:
Pay special attention to the assumptions (register allocation for variables,

which registers for temp. values, etc.) that we list.
You are not graded on tests! But for your own sake, jot down some test
cases to run on the interpreter:

- Different initializations of registers

- Expected register state after execution

Task 2:
Once you’ve written the function in C, try testing it yourself with ‘'main’!

Cornell Bowers C1S
Computer Science




