
Parallelism, Multicore, and
Synchronization

[K. Bala, A. Bracy, G. Guidi, M. Martin, S. McKee, A. Roth, A. Sampson, Z. Susag,
E. Sirer, and H. Weatherspoon]

Parallelism & Synchronization
Multicore  more cores!
Cache Coherency
• Processors cache shared data  they see different (incoherent) values for the same memory location

Threads
• Mechanism to take advantage of parallelism

Synchronizing parallel programs
• Atomic Instructions

• HW support for synchronization

How to write parallel programs
• Threads and processes

• Critical sections, race conditions, and mutexes

2

xkcd/619

3

Big Picture: Multicore and Parallelism

4

5

control

A
L
U

Register
File

Data
Mem

PC

Instruct
Mem

+
4 55

FETCH DECODE EXECUTE MEMORY WRITEBACK

Big Picture: Multicore and Parallelism
Why do I need four computing cores on my phone?!

5

Big Picture: Multicore and Parallelism
Why do I need eight computing cores on my phone?!

6

Big Picture: Multicore and Parallelism
Why do I need sixteeen computing cores on my phone?!

Pitfall: Amdahl’s Law

8

affected execution time
amount of improvement

+ execution time unaffected

Execution time after improvement =

Timproved = Taffected
improvement factor

+ Tunaffected

Amdahl’s Law

9

Scaling Example
Workload: sum of 10 scalars, and 10 × 10 matrix sum

• Speed up from 10 to 100 processors?

Single processor: Time = (10 + 100) × tadd

10 processors
• Time = 100/10 × tadd + 10 × tadd = 20 × tadd• Speedup = 110/20 = 5.5

100 processors
• Time = 100/100 × tadd + 10 × tadd = 11 × tadd• Speedup = 110/11 = 10

Assumes load can be balanced across processors

10

Takeaway
Unfortunately, we cannot not obtain unlimited scaling (speedup) by
adding unlimited parallel resources, eventual performance is
dominated by a component needing to be executed sequentially.
Amdahl's Law is a caution about this diminishing return

11

Big Picture: Multicore and Parallelism
Why do I need sixteeen computing cores on my phone?!

12

Answer Part I: Moore’s Law
• Electrical Switch

• On/Off
• Binary

• Transistor

13

The first transistor on a
workbench at AT&T Bell Labs in
1947

Moore’s Law
• 1965

• # of transistors integrated on a die doubles every 18-24 months (i.e., grows
exponentially with time)

• Amazingly visionary
• 2300 transistors, 1 MHz clock (Intel 4004) - 1971
• 16 Million transistors (Ultra Sparc III)
• 42 Million transistors, 2 GHz clock (Intel Xeon) – 2001
• 55 Million transistors, 3 GHz, 130nm technology, 250mm2 die (Intel Pentium 4) – 2004
• 290+ Million transistors, 3 GHz (Intel Core 2 Duo) – 2007
• 721 Million transistors, 2 GHz (Nehalem) - 2009
• 1.4 Billion transistors, 3.4 GHz Intel Haswell (Quad core) – 2013
• 7.2 Billion transistors, 3-3.9 GHz Intel Broadwell (22-core) – 2016
• 20 Billion transistors, 3.49 GHz Apple M2 (8 core) — 2022
• 28 Billion transistors, 4.4 GHz Apple M4 (16x core) — 2024

14

15https://en.wikipedia.org/wiki/Moore%27s_law

Why Multicore?
Moore’s law

• A law about transistors
• Smaller means more transistors per die
• And smaller means faster too

But: Power consumption growing too…

16

Answer Part II: Power Limits

17

Hot Plate

Rocket Nozzle

Nuclear Reactor

Surface of Sun

Xeon

180nm 32nm

Answer Part II: Power Limits
Power = capacitance * voltage2 * frequency
In practice: Power ~ voltage3

Reducing voltage helps (a lot)
... so does reducing clock speed
Better cooling helps

The power wall
• We can’t reduce voltage further
• We can’t remove more heat

• See the end of Dennard scaling:
https://en.wikipedia.org/wiki/Dennard_scaling#Breakdown_of_Dennard_scaling_around_2006

18

Lower Frequency

https://en.wikipedia.org/wiki/Dennard_scaling#Breakdown_of_Dennard_scaling_around_2006

2
2 Dual-Core

Underclocked -20%

Why Multicore?

19

Power
1.0x
1.0x

Performance
Single-Core

Power
1.2x

1.7x

Performance Single-Core
Overclocked +20%

Power
0.8x

0.51x

Performance Single-Core
Underclocked -20%

1
1Power

Performance 1.6x
1.02x

Next
So, How do we get performance, especially with an
increasing number of transistors?

20

seconds instructions cycles seconds
program program instruction cycle

Performance Improvement 101

21

= x x

seconds instructions cycles seconds
program program instruction cycle

Performance Improvement 101

Examples:
Single-cycle  Multi-cycle
 Clock period, CPI
CISC  RISC
 insn count, CPI, Clock period
Pipelining
 Clock period, CPI

22

= x x

Increasing Clock Frequencies
Darling of performance improvement for decades

Why is this no longer the strategy?

Hitting Frequency Limits:
• Heat
• Power

23

FrequencyVoltageload CapacitivePower 2 ××=

Increasing Clock Frequencies
Darling of performance improvement for decades

Why is this no longer the strategy?

Hitting Frequency Limits:
• Heat
• Power
• Pipeline depth
• Technology Scaling

• Intel retires “tick-tock” development model (2016)
• Intel hits 10nm goals and signals a shift away from traditional CPUs (2019)

24

https://arstechnica.com/information-technology/2016/03/intel-retires-tick-tock-development-model-extending-the-life-of-each-process/
https://arstechnica.com/gadgets/2019/10/intels-10nm-process-is-on-track-so-is-shift-in-business-model/

Improving CPI/IPC via ILP
You’ve seen:
Exploiting Intra-instruction parallelism:
 Pipelining (decode A while fetching B)
You haven’t seen:
Exploiting Instruction Level Parallelism (ILP):
• Multiple issue (2-wide, 4-wide, etc.)
• Dynamic Scheduling (OoO)

25

Static Multiple Issue
a.k.a. Very Long Instruction Word (VLIW)
Compiler pairs instructions
Example: Static Dual-Issue 32-bit RISC-V, 64-bit pairs

1. ALU/Branch instruction (or nop)
2. Load/Store instruction (or nop)

How does HW detect and resolve hazards?
 It doesn’t.  Compiler must avoid hazards

26

Insn Addr Insn type Pipeline Stages
n ALU/branch IF ID EX MEM WB
n + 4 Load/store IF ID EX MEM WB
n + 8 ALU/branch IF ID EX MEM WB
n + 12 Load/store IF ID EX MEM WB
n + 16 ALU/branch IF ID EX MEM WB
n + 20 Load/store IF ID EX MEM WB

Loop: lw t0, 0(s1) # t0=array element
 add t0, t0, s2 # add scalar in s2
 sw t0, 0(s1) # store result
 addi s1, s1,–4 # decrement pointer
 bne s1, zero, Loop # branch s1!=0

Scheduling Example

27

ALU/branch Load/store cycle

Loop: nop lw t0, 0(s1) 1

addi s1, s1,–4 nop 2

add t0, t0, s2 nop 3

bne s1, zero, Loop sw t0, 4(s1) 4

Improving IPC via ILP
Exploiting Intra-instruction parallelism:
 Pipelining (decode A while fetching B)

Exploiting Instruction Level Parallelism (ILP):
• Multiple issue (2-wide, 4-wide, etc.)
• Dynamic Scheduling (OoO)

28

Dynamic Scheduling
Speculation/Out-of-order Execution

• Fetch many instructions
• Execute the ones whose inputs are ready
• Guess results of branches, loads, etc.
• Roll back/Flush/Zap if guesses were wrong
• Don’t commit results until all previous insns committed

• fetch in order, execute OoO, commit in order

29

Effectiveness of OoO Superscalar
Kept improv ing performance… until it stopped
2-w ide? Yes please! 4-w ide? Also great. 8? 16?
Limiting factors:

• Program dependencies
• Memory dependence detection  be conservative

- e.g. Pointer Aliasing: A[0] += 1; B[0] *= 2;
• Hard to expose parallelism

- Still limited by the fetch stream of the static program
• Structural limits

- Memory delays and limited bandwidth
• Hard to keep pipelines full, especially with branches

30

Improving IPC via ILP TLP
ILP reaching its limits…
Look for parallelism at a different granularity

Introducing: Thread-Level parallelism
Threads are separate tasks within the same process

Threads can run:
• On separate cores
• Taking turns on one core
• On one core at the same time (hyperthreading)

31

What is a thread?
Process: multiple threads, code, data and OS state
Threads: concurrent computations that share the same address space
• Share: code, data, files
• Do not share: registers or stack

32

Threads vs Processes
Threads
• create
• join
• Defined by

• Stack, SP, PC, registers

• Multiple threads share
• address space (text, data, heap) ,

files

Processes
• fork (and exec)
• wait
• Defined by

• SP, PC, registers, address space

33

Thread Memory Layout

34

Data

Insns

Stack 1

PC

Thread 1

PC

PC

SP
Stack 2

Thread 2
SP

Stack 3

Thread 3
SP

(Heap subdivided, shared, & not shown.)

Power Efficiency

35

CPU Year Clock
Rate

Pipeline
Stages

Issue
width

Out-of-order/
Speculation

Cores Power

i486 1989 25MHz 5 1 No 1 5W
Pentium 1993 66MHz 5 2 No 1 10W
Pentium Pro 1997 200MHz 10 3 Yes 1 29W
P4 Willamette 2001 2000MHz 22 3 Yes 1 75W
UltraSparc III 2003 1950MHz 14 4 No 1 90W
P4 Prescott 2004 3600MHz 31 3 Yes 1 103W

Those simpler cores did something very right.

2
2 Dual-Core

Underclocked -20%

Why Multicore?

36

Power
1.0x
1.0x

Performance
Single-Core

Power
1.2x

1.7x

Performance Single-Core
Overclocked +20%

Power
0.8x

0.51x

Performance Single-Core
Underclocked -20%

1
1Power

Performance 1.6x
1.02x

Power Efficiency

37

CPU Year Clock
Rate

Pipeline
Stages

Issue
width

Out-of-order/
Speculation

Cores Power

i486 1989 25MHz 5 1 No 1 5W
Pentium 1993 66MHz 5 2 No 1 10W
Pentium Pro 1997 200MHz 10 3 Yes 1 29W
P4 Willamette 2001 2000MHz 22 3 Yes 1 75W
UltraSparc III 2003 1950MHz 14 4 No 1 90W
P4 Prescott 2004 3600MHz 31 3 Yes 1 103W

Those simpler cores did something very right.

Core 2006 2930MHz 14 4 Yes 2 75W
Core i5 Nehal 2010 3300MHz 14 4 Yes 1 87W
Core i5 Ivy Br 2012 3400MHz 14 4 Yes 8 77W
UltraSparc T1 2005 1200MHz 6 1 No 8 70W

Parallel Programming
So lets just all use multicore from now on!
… but software must be written as parallel program

Multicore diff iculties
• Partitioning work
• Coordination & synchronization
• Communications overhead
• How do you write parallel programs?

... without knowing exact underlying architecture?

38

Work Partitioning
Partition work so all cores have something to do

Want:

39

Might Get:

And that's if the parts are parallelizable

Amdahl’s Law
If tasks have a serial part and a parallel part…
Example:
1. divide input data into n pieces
2. do work on each piece
3. combine all results

Amdahl’s Law. As # of cores increases …
• time to execute parallel part?
• time to execute serial part?
• Serial part eventually dominates

40

goes to zero
remains the same

Parallel Programming
So lets just all use multicore from now on!
… but software must be written as parallel program

Multicore diff iculties
• Partitioning work
• Coordination & synchronization
• Communications overhead
• How do you write parallel programs?

... without knowing exact underlying architecture?

41

Big Picture: Parallelism and Synchronization
How do I take advantage of parallelism?
How do I write (correct) parallel programs?

What primitives do I need to implement correct parallel programs?

42

	Parallelism, Multicore, and Synchronization
	Parallelism & Synchronization
	xkcd/619
	Big Picture: Multicore and Parallelism
	Big Picture: Multicore and Parallelism
	Big Picture: Multicore and Parallelism
	Big Picture: Multicore and Parallelism
	Pitfall: Amdahl’s Law
	Amdahl’s Law
	Scaling Example
	Takeaway
	Big Picture: Multicore and Parallelism
	Answer Part I: Moore’s Law
	Moore’s Law
	Slide Number 15
	Why Multicore?
	Answer Part II: Power Limits
	Answer Part II: Power Limits
	Why Multicore?
	Next
	Performance Improvement 101
	Performance Improvement 101
	Increasing Clock Frequencies
	Increasing Clock Frequencies
	Improving CPI/IPC via ILP
	Static Multiple Issue
	Scheduling Example
	Improving IPC via ILP
	Dynamic Scheduling
	Effectiveness of OoO Superscalar
	Improving IPC via ILP TLP
	What is a thread?
	Threads vs Processes
	Thread Memory Layout
	Power Efficiency
	Why Multicore?
	Power Efficiency
	Parallel Programming
	Work Partitioning
	Amdahl’s Law
	Parallel Programming
	Big Picture: Parallelism and Synchronization

