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Parallelism & Synchronization

Multicore = more cores!

Cache Coherency

» Processors cache shared data = they see different (incoherent) values for the same memory location
Threads

« Mechanism to take advantage of parallelism

Synchronizing parallel programs

* Atomic Instructions

 HW support for synchronization

How to write parallel programs

* Threads and processes
 C(Critical sections, race conditions, and mutexes
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Big Picture: Multicore and Parallelism
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Big Picture: Multicore and Parallelism

Why do I need four computing cores on my phone?!
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Big Picture: Multicore and Parallelism

Why do | need eight computing cores on my phone?!
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Picture: Multicore and Parallelism
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Pitfall: Amdahl’s La

Execution time g¥ter Improvement =
affected execution time

amount of improvement
+ execution time unaffected

T — Taffected + T

improved i provement factor

unaffected
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Amdahl’s Law
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Scaling Example

Workload: sum of 10 scalars, and 10 x 10 matrix sum
« Speed up from 10 to 100 processors?

Single processor: Time = (10+100) x t_4

10 processors
e Time=100/10%t , +10%xt ,=20%t_|
* Speedup = 110/20 °5.5

100 processors
* Time=100/100 % t,  +10%t =11 %t
e Speedup=110/11= 10

Assumes load can be balanced across processors

=% | Cornell Bowers CIS
& | Computer Science
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Takeaway

Unfortunately, we cannot not obtain unlimited scaling (speedup) by
adding unlimited parallel resources, eventual performance is
dominated by a component needing to be executed sequentially.

Amdahl's Law is a caution about this diminishing return

Sy | Cornell Bowers CIS
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Picture: Multicore and Parallelism
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Answer Part |: Moore’s Law

e Electrical Switch
* On/Off
e Binary

e [ransistor

Cornell Bowers CIS
Computer Science

The first transistor on a
workbench at AT&T Bell Labs in
1947/
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Moore’s Law

* 1965

 # of transistors integrated on a die doubles every 18-24 months (i.e., grows
exponentially with time)

* Amazingly visionary
» 2300 transistors, 1 MHz clock (Intel 4004) - 1971
» 16 Million transistors (Ultra Sparc I1l)
* 42 Million transistors, 2 GHz clock (Intel Xeon) - 2001
55 Million transistors, 3 GHz, 130nm technology, 250mm? die (Intel Pentium 4) - 2004
e 290+ Million transistors, 3 GHz (Intel Core 2 Duo) - 2007
o 721 Million transistors, 2 GHz (Nehalem) - 2009
* 1.4 Billion transistors, 3.4 GHz Intel Haswell (Quad core) - 2013
« 7.2 Billion transistors, 3-3.9 GHz Intel Broadwell (22-core) - 2016
» 20 Billion transistors, 3.49 GHz Apple M2 (8 core) — 2022
« 28 Billion transistors, 4.4 GHz Apple M4 (16x core) — 2024

Cornell Bowers GIS
Computer Science
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Moore’s Law: The number of transistors on microchips doubles every two years [oSNaWEUE

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
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Why Multicore?

Moore’s law
e Alaw about transistors
* Smaller means more transistors per die
* And smaller means faster too

But: Power consumption growing too...

Cornell Bowers GIS
Computer Science
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Answer Part ll: Power Limits

Power = capacitance " voltage’ *\frequency

In practice: Power ~ voltage? !
Lower Frequency

J

Reducing voltage helps (a lot)
... S0 does reducing clock speed
Better cooling helps

The power wall

* We can’t reduce voltage further
e We can't remove more heat

* Seetheend of Dennard scaling:

https://en.wikipedia.org/wiki/Dennard scaling#Breakdown of Dennard_scaling around_ 2006
Cornell Bowers CIS

. 18
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Why Multicore?

Performance 1.9x

Power 1 7x
Performance 1.0x

Power 1 0%
Performance 0.8

Power -O.le

Performance 1 1 6%
Power 1 00x
Cornell Bowers CIS .

Computer Science

Single-Core
Overclocked +20%

Single-Core

Single-Core
Underclocked -20%

Dual-Core
Underclocked -20%

19



Next

So, How do we get performance, especially with an
increasing number of transistors?

Sy | Cornell Bowers CIS
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Performance Improvement 101

seconds instructions cycles
—— — —— X
program program Instruction

Cornell Bowers GIS
Computer Science

X

seconds

cycle
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Performance Improvement 101

seconds instructions cycles y seconds
- —— X

program program instruction cycle

Fxamples:

Single-cycle = Multi-cycle
Clock period, B8 CP
CISC =2 RISC
insn count, E3 CPI, B8 Clock period
Pipelining
Cornell Bowers CIS Clock period, CP

Computer Science
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Increasing Clock Frequencies

Darling of performance improvement for decades

Why is this no longer the strategy?

Hitting Frequency Limits:

Power = Capacitive load x Voltage® x Frequency
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Increasing Clock Frequencies

Darling of performance improvement for decades

Why is this no longer the strategy?

Hitting Frequency Limits:
* Heat

* Power

* Pipeline depth

* Technology Scaling
* Intel retires “tick-tock” development model (2016)
* Intel hits 10nm goals and signals a shift away from traditional CPUs (2019)

Cornell Bowers GIS
Computer Smencm

24
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Improving GPI/IPC via ILP

You've seen:
Exploiting Intra-instruction parallelism:
Pipelining (decode A while fetching B)

You haven't seen:

Exploiting Instruction Level Parallelism (ILP):

* Multiple issue (2-wide, 4-wide, etc.)
* Dynamic Scheduling (O00)

Cornell Bowers GIS
Computer Science
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Static Multiple Issue

a.k.a. Very Long Instruction Word (VLIW)
Compiler pairs instructions

Example: Static Dual-Issue 32-bit RISC-V, 64-bit pairs
1. ALU/Branch instruction (or nop)
2. Load/Store instruction (or nop)

How does HW detect and resolve hazards?

't doesn’t. @ Compiler must avoid hazards
Insn Addr  Insn type Pipeline Stages

n JAtubench | IF | © | ex lwew]we | |
04 ltoasore | IF | © | ex [wew | ws | |

nvs  [Atubenon || F | o | ex [wew|we |
012 ltoassre | | IF | © | ex [wew|we |
PR .20 [Losasiore | | | IF | 1D | Ex | mEm| we_




leduling Example

Loop: 0(sl) # tO=array element

add tO, t0, s2 # add scalar 1n s?2

sw t0, 0(sl) # store result

addi sl1, s1,-4 # decrement pointer

bne sl, zero, Loop # branch sl1!=0
ALU/branch Load/store cycle

Loop: nop lw 0, 0(s1) 1

addisl,sl,—4 nop 2
add t0, t0, s2 nop 3
bne s1, zero, Loop sw 10, 4(s1) 4

=% | Cornell Bowers CIS
& | Computer Science
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Improving IPC via ILP

Exploiting Intra-instruction parallelism:
Pipelining (decode A while fetching B)

Exploiting Instruction Level Parallelism (ILP):

* Multiple issue (2-wide, 4-wide, etc.)
* Dynamic Scheduling (O00)

Cornell Bowers GIS
Computer Science
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Dynamic Scheduling

Speculation/Out-of-order Execution
* Fetch many instructions
» Execute the ones whose inputs are ready
e Guess results of branches, loads, etc.
* Roll back/Flush/Zap it guesses were wrong

* Don’t commit results until all previous insns committec
e fetch in order, execute 000, commit in order

Cornell Bowers GIS
Computer Science
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Effectiveness of 000 Superscalar

Kept improving performance... until it stopped
2-wide? Yes pleasel 4-wide? Also great. 87 167

Limiting factors:
* Program dependencies

Memory dependence detection = be conservative
- e.g. Pointer Aliasing: A[0] +=1; B[0] "= 2;
Hard to expose parallelism
- Still limited by the fetch stream of the static program
Structural limits

- Memory delays and limited bandwidth
Hard to keep pipelines full, especially with branches

Cornell Bowers GIS
Computer Science
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Improving IPC via k@ TLP

ILP reachingits limits. ..
Look Tor parallelism at a different granularity

Introducing: Thread-Level parallelism
Threads are separate tasks within the same process

Threads can run:

* On separate cores

* Taking turns on one core

* On one core at the same time (hyperthreading)

Cornell Bowers GIS
Computer Science
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What is a thread?

Process: multiple threads, code, data and OS state

Threads: concurrent computations that share the same address space
e Share: code, data, files

* Do notshare: registers or stack

Cornell Bowers CIS
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Threads vs Processes

Threads
* Create
*join
* Defined by
» Stack, SP, PC, registers

* Multiple threads share

 address space (text, data, heap) ,
files

Cornell Bowers GIS
Computer Science

Processes
 fork (and exec)
e walt

* Defined by

* SP, PC, registers, address space

33



Thread Memory Layout

Thread 1 Stack 1
SP

PCH

Stack 2

Thread 2
SP-

PC+
Thread

(Heap subdivided, shared, & not shown.)

| Cornell Bowers CIS
w2 | Computer Science




Power Efficiency

CPU Year Clock Pipeline | Issue | Out-of-order/ | Cores | Power
Rate Stﬂes width | Speculation
486 1989 | 25MHz¢y | (5) 1 No 1 [ (5w)
Pentium 1993 | 66MHZz 5 2 No 1 10W
Pentium Pro | 1997 | 200MHz 10 3 Yes 1 29W
P4 Willamette | 2001 | 2000MHz 22 3 Yes 1 75W
UltraSparc Il | 2003 | 1950MHz 14 4 No 1 90w
P4 Prescott 2004 | 3600MHz ’ Z 31) 3 Yes 1 (103W5

Cornell Bowers GIS
Computer Science

Those simpler cores did something very right.

35



&\‘\,uuw"

&

§ 2)

SN
D <)
Qb A

Why Multicore?

Performance 1.9x

Power 1 7x
Performance 1.0x

Power 1 0%
Performance 0.8

Power -O.le

Performance 1 1 6%
Power 1 00x
Cornell Bowers CIS .

Computer Science

Single-Core
Overclocked +20%

Single-Core

Single-Core
Underclocked -20%

Dual-Core
Underclocked -20%
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Power Efficiency

CPU Year Clock Pipeline | Issue | Out-of-order/ | Cores | Power
Rate Stﬂes width | Speculation
486 1989 | 25MHz | (5) 1 No 1 [ (5w)
Pentium 1993 | 66MHz 5 2 No 1 10W
Pentium Pro | 1997 | 200MHz 10 3 Yes 1 29W
P4 Willamette | 2001 | 2000MHz | 22 3 Yes 1 75W
UltraSparc Ill | 2003 | 1950MHz L{ 4 No 1 90W
P4 Prescott | 2004 | 3600MHz | (31) 3 Yes 1 [Gosw)
Core 2006 | 2930MHz | 14 4 Yes 2 | 75W
Core i5 Nehal | 2010 | 3300MHz 14 4 Yes 1 87W
Core i5 Ivy Br | 2012 | 3400MHz | 14 4 Yes 8\ |/77TW\
UltraSparc T1 | 2005 | 1200MHz | 6 1 No \ 8 ) |[\7ow

Cornell Bowers GIS
Computer Science

Those simpler cores did something very right.
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Parallel Programming

So lets just all use multicore from now on!
... but software must be written as parallel program

Multicore difficulties
* Partitioning work
» Coordination & synchronization
« Communications overhead
* How do you write parallel programs?

.. without knowing exact underlying architecture?

Cornell Bowers GIS
Computer Science
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Work Partitioning

Partition work so all cores have something to do

Might Get:

Want:

comelbonesc\N A That's i the parts are parallelizable

Computer Science

39
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Amdahl’s Law

T tasks have a serial part and a parallel part. ..
Fxample: B T

1. divide input data into n pieces T
2. dowork on each piece

3. combine all results

Amdahl’s Law. As # of cores increases ...

* time to execute parallel part? goes to zero

* time to execute serial part? ~ remains the same

 Serial part eventually dominates

Cornell Bowers GIS
Computer Science
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Parallel Programming

So lets just all use multicore from now on!
... but software must be written as parallel program

Multicore difficulties
* Partitioning work
» Coordination & synchronization
« Communications overhead
* How do you write parallel programs?

.. without knowing exact underlying architecture?

Cornell Bowers GIS
Computer Science
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Big Picture: Parallelism and Synchronization

How do | take advantage of parallelism?

How do | vvrite[(correct)]parallel Drograms?

What primitives do | need to implement correct parallel programs?
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