Parallelism, Multicore, and
Synchronization

=% | cormell Bawers CIS [K. Bala, A. Bracy, G. Guidi, M. Martin, S. McKee, A. Roth, A. Sampson, Z. Susag,

%2 | Computer Science E. Sirer, and H. Weatherspoon]

Parallelism & Synchronization

Multicore = more cores!

Cache Coherency

» Processors cache shared data = they see different (incoherent) values for the same memory location
Threads

« Mechanism to take advantage of parallelism

Synchronizing parallel programs

* Atomic Instructions

 HW support for synchronization

How to write parallel programs

* Threads and processes
 C(Critical sections, race conditions, and mutexes

ey | Cornell Bowers CIS

7 | Computer Science

xked/619

IT TOOK A LOT OF WERK, BUT THIS
LATEST LINUX PATCH ENABLES SUPPCRT
FOR MACHINES WITH Y096 CPUs,

UP FROM THE OLD LIMIT OF 1,024,

/ DO YOU HAVE SUPPCRT FOR SMOOTH
FLLL-SCREEN FlLasH VIDEDYET?

NO, BUTWHO USES 7AHA77

\

()

| Cornell Bowers CIS
w2 | Computer Science

Big Picture: Multicore and Parallelism

Instruct
Mem

Register
> i
File ¥
| Data
E] Mem
)
FETCH DECODE EXECUTE MEMORY WRITEBACK

| Cornell Bowers CIS
w2 | Computer Science

Big Picture: Multicore and Parallelism

Why do I need four computing cores on my phone?!

Instruct
Mem

Instruct
Mem

Register|
File

Register
File

FETCH DECODE EXECUTE MEMORY WRITEBACK FETCH DECODE EXECUTE MEMORY WRITEBACK

Instruct
Mem

Instruct
Mem

Register|
File

Register
File

FETCH DECODE EXECUTE MEMORY WRITEBACK FETCH DECODE EXECUTE MEMORY WRITEBACK

Cornell Bowers GIS
Computer Science

Big Picture: Multicore and Parallelism

Why do | need eight computing cores on my phone?!

Instruct

Register|

Mem 4
File
%
FETCH DECODE EXECUTE MEMORY WRITEBACK
Instruct X
Mem Reglster
File
%
FETCH DECODE EXECUTE MEMORY WRITEBACK
Instruct X
Mem Reglster
File
%
FETCH DECODE EXECUTE MEMORY WRITEBACK

Instruct
Mem

Register|
File

DECODE EXECUTE MEMORY WRITEBACK

Cornell Bowers GIS
Computer Science

Instruct
Mem

FETCH

)

|_ Register

File

DECODE EXECUTE MEMORY WRITEBACK

Instruct
Mem

FETCH

)

Register
File

DECODE EXECUTE MEMORY WRITEBACK

Instruct
Mem

FETCH

)

Register
File

DECODE EXECUTE MEMORY WRITEBACK

Instruct
Mem

FETCH

)

Register
File

DECODE EXECUTE MEMORY WRITEBACK

it

Picture: Multicore and Parallelism

ng cores on my phone?!

do I need sixteeen comput

|_ Register|

File

DECODE

Instruct
Mem

EXECUTE

MEMORY

)

WRITEBACK FETCH

Register|
File

DECODE

|_ Register

File

DECODE

Instruct
Mem

)

FETCH

EXECUTE MEMORY WRITEBACK

Instruct
Mem

EXECUTE

MEMORY

)

WRITEBACK FETCH

Register|
File

DECODE

Register
File

DECODE

Register|
File

DECODE EXECUTE MEMORY WRITEB

Instruct
Mem

)

FETCH

EXECUTE MEMORY WRITEBACK

Instruct
Mem

EXECUTE

MEMORY

)

WRITEBACK FETCH

Instruct] Instruct
Mem Reglster Mem
File
% %
FETCH DECODE EXECUTE MEMORY WRITEBACK FETCH
Instruct] Instruct
Mem Reglster Mem
File
% %
FETCH DECODE EXECUTE MEMORY WRITEBACK FETCH
Instruct] Instruct
Mem Reglster Mem
File
% %
FETCH DECODE EXECUTE MEMORY WRITEBACK FETCH
Instruct Instruct

Mem

Register|
File

DECODE

EXECUTE

Mem

)

FETCH

MEMORY WRITEBACK

Cornell Bowers GIS
Computer Science

Register|
File

DECODE

Register
File

DECODE

Register|
File

DECODE EXECUTE MEMORY WRITEB

Instruct
Mem

)

FETCH

EXECUTE MEMORY WRITEBACK

Instruct
Mem

EXECUTE

MEMORY

)

WRITEBACK FETCH

Register
File

DECODE

Register|
File

DECODE EXECUTE MEMORY WRITEB

Instruct
Mem

)

FETCH

EXECUTE MEMORY WRITEBACK

Register|
File

DECODE

EXECUTE MEMORY WRITEB

Pitfall: Amdahl’s La

Execution time g¥ter Improvement =
affected execution time

amount of improvement
+ execution time unaffected

T — Taffected + T

improved i provement factor

unaffected

Cornell Bowers GIS
Computer Science

e"'“umy%

%

3’ 2

Q ‘:J 2
60)
Q8 A2

&\‘\,umye,

&

& 2)

SN
S %)
Qb A

Amdahl’s Law

Cornell Bowers GIS
Computer Science

Scaling Example

Workload: sum of 10 scalars, and 10 x 10 matrix sum
« Speed up from 10 to 100 processors?

Single processor: Time = (10+100) x t_4

10 processors
e Time=100/10%t , +10%xt ,=20%t_|
* Speedup = 110/20 °5.5

100 processors
* Time=100/100 % t, +10%t =11 %t
e Speedup=110/11= 10

Assumes load can be balanced across processors

=% | Cornell Bowers CIS
& | Computer Science

10

Takeaway

Unfortunately, we cannot not obtain unlimited scaling (speedup) by
adding unlimited parallel resources, eventual performance is
dominated by a component needing to be executed sequentially.

Amdahl's Law is a caution about this diminishing return

Sy | Cornell Bowers CIS

%2 | Computer Science

it

Picture: Multicore and Parallelism

ng cores on my phone?!

do I need sixteeen comput

|_ Register|

File

DECODE

Instruct
Mem

EXECUTE

MEMORY

)

WRITEBACK FETCH

Register|
File

DECODE

|_ Register

File

DECODE

Instruct
Mem

)

FETCH

EXECUTE MEMORY WRITEBACK

Instruct
Mem

EXECUTE

MEMORY

)

WRITEBACK FETCH

Register|
File

DECODE

Register
File

DECODE

Register|
File

DECODE

EXECUTE MEMORY WRITEB

Instruct
Mem

)

FETCH

EXECUTE MEMORY WRITEBACK

Instruct
Mem

EXECUTE

MEMORY

)

WRITEBACK FETCH

Instruct] Instruct
Mem Reglster Mem
File
% %
FETCH DECODE EXECUTE MEMORY WRITEBACK FETCH
Instruct] Instruct
Mem Reglster Mem
File
% %
FETCH DECODE EXECUTE MEMORY WRITEBACK FETCH
Instruct] Instruct
Mem Reglster Mem
File
% %
FETCH DECODE EXECUTE MEMORY WRITEBACK FETCH
Instruct Instruct

Mem

Register|
File

DECODE

EXECUTE

Mem

)

FETCH

MEMORY WRITEBACK

Cornell Bowers GIS
Computer Science

Register|
File

DECODE

Register
File

DECODE

Register|
File

DECODE

EXECUTE MEMORY WRITEB

Instruct
Mem

)

FETCH

EXECUTE MEMORY WRITEBACK

Instruct
Mem

EXECUTE

MEMORY

)

WRITEBACK FETCH

Register
File

DECODE

Register|
File

DECODE

EXECUTE MEMORY WRITEB

Instruct
Mem

)

FETCH

EXECUTE MEMORY WRITEBACK

Register|
File

DECODE

EXECUTE MEMORY WRITEB

12

&\‘\,umye,

&

& 2)

SN
S %)
Qb A

Answer Part |: Moore’s Law

e Electrical Switch
* On/Off
e Binary

e [ransistor

Cornell Bowers CIS
Computer Science

The first transistor on a
workbench at AT&T Bell Labs in
1947/

13

Moore’s Law

* 1965

 # of transistors integrated on a die doubles every 18-24 months (i.e., grows
exponentially with time)

* Amazingly visionary
» 2300 transistors, 1 MHz clock (Intel 4004) - 1971
» 16 Million transistors (Ultra Sparc I1l)
* 42 Million transistors, 2 GHz clock (Intel Xeon) - 2001
55 Million transistors, 3 GHz, 130nm technology, 250mm? die (Intel Pentium 4) - 2004
e 290+ Million transistors, 3 GHz (Intel Core 2 Duo) - 2007
o 721 Million transistors, 2 GHz (Nehalem) - 2009
* 1.4 Billion transistors, 3.4 GHz Intel Haswell (Quad core) - 2013
« 7.2 Billion transistors, 3-3.9 GHz Intel Broadwell (22-core) - 2016
» 20 Billion transistors, 3.49 GHz Apple M2 (8 core) — 2022
« 28 Billion transistors, 4.4 GHz Apple M4 (16x core) — 2024

Cornell Bowers GIS
Computer Science

14

Cornell Bov
Compute

Moore’s Law: The number of transistors on microchips doubles every two years [oSNaWEUE

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.

Transistor count

Pentium 4 Prescott-2M
AMD ke @

Six
Dual-core Itanium 2 {p <

Pentiurm D Presler OWERS
.lmlum Z ».uLh \ 9
1(“
: AMD K10 quad 2M L3
[tanium 2 Madison 6M° Core 2 Duc Wolidale

Pentium D Smithfield

Pentium 4 Northwood, © ©Ocaron
<

€ Pentium |ll Coppermine

in Data

GC2IRU #»AMD Epyc Rome
72-core Xeon Phi Centriq 2400 ¢ ¢ AWS Graviton2
SPARC M7

IBM 213 Storage Conrroller
18-core Xeon Haswell [’)

Xbox One main SoC
61-core-Xeon-Phi O
12-core POWERQ
8-core Xeon Nehalem-EX~,

core Xeon 7400
§ ° Q

Core i7 (Quad)

32-core AMD E
f'\pplr AIZX 3\omc
HiSilicon Kirin 990 5G
° 8 Apple A13 (iPhone 11 Pro)
OAW) Ryzen 7 3700
“Hisilicon Kirin 710
10-core Core i7 Broadwell-E
Qualcomm Snapdragon 83 5
Dual-core + CI U Iris Core i7 Broadwell-U
Quad-core + GPU GT2 Core i7 Skylake K
Qu ad-core + GPU Care i7 Haswell
f\pp\e A7 (dual-core ARM64 "mobile SoC")

Eors- Duo Conroe
Core 2 Duo Wolfdale 3M

\?Corc 2 Duo Allendale

Pentium 4 Cedar Mill
Pentium 4 Prescott

QAiom
@ ARM Cortex-A9

Pentium IIl Tualatin

HJ m 1l Katmai

Deschutes

3V SN x b

50,000,000,000
10,000,000,000
5,000,000,000
1,000,000,000
500,000,000
Itanium 2 McKinley €
100,000,000
50,000,000
Pentium 4 Willamette €p
Pentium Il Maobile Dixon,
AMD K7
AMD K6-1lI
10,000,000 AMD K6 Qe
5 OOO OOO Pentium Pro, DD 1.ng|mm“m|
1 » 0 Klamath
Punrumo AMD K5
SA-110
1,000,000 Inte! 5045% Fsono
200,000 Bt sk, @
Intel 8038 Intel o €QARM 3
Motorola (:EBOZ()Q% 2 éog
100,000 7 Mol °
, 0l 8‘0“ Intel 80286 AR
50,000 .4 ©intel 80186 sToM
Intel 8084€p € Intel 8088 ° ©rRM 2 m& 4
) 2 of\‘{M 1
10,000 s 1000 ziog 8 Mg%ggﬁ . sl A
5,000 RCA1802 neigogs o002
. Intel 8008 alnlﬂl 8080
Motarol MOS Technology
Intel 4&]4 g Oro ? e
1,000
O AV A Ao A% D P P oy o 0 o P
O Al K A A QU 8 R a8 i A3 Q0 Y

Data source: Wikipedia (wikipedia.org/wiki/Transistor_count)
QurWorldinData.org - Research and data to make progress against the world's largest problems.

Year in which the microchip was first introduced

b« ®
S @Q‘O S S A
https://en.wikipedia.org/wiki/Moore%27s5 law

Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

i

‘\.,,\“-“""'54

S

51 %)

) ‘:J 5
60)
Q8 A2

Why Multicore?

Moore’s law
e Alaw about transistors
* Smaller means more transistors per die
* And smaller means faster too

But: Power consumption growing too...

Cornell Bowers GIS
Computer Science

16

=i | Cornell Bowers G
Computer Scierme

.

=
&
~—
v
o=
(ys
=

t Surface of Sun

| Rocket Nozzle

| Nuclear Reactor

- Pentium lll ® processor
HOt Plate entium Il ® processor

L.............. EFE R EEEEENFEENEEEENEEEENEENEEEN
L pentium Pro GD Proce SSor
Pentium ® processor

1.5 1p D.7p O0.5p D.35p 0.25u 0.18p 0.134 0.1u 0.07u

Answer Part ll: Power Limits

Power = capacitance " voltage’ *\frequency

In practice: Power ~ voltage? !
Lower Frequency

J

Reducing voltage helps (a lot)
... S0 does reducing clock speed
Better cooling helps

The power wall

* We can’t reduce voltage further
e We can't remove more heat

* Seetheend of Dennard scaling:

https://en.wikipedia.org/wiki/Dennard scaling#Breakdown of Dennard_scaling around_ 2006
Cornell Bowers CIS

. 18
Computer Science

‘\«,,\“‘“""'e,,

S

51 %)

) ‘:J 5
60)
Q8 A2

https://en.wikipedia.org/wiki/Dennard_scaling#Breakdown_of_Dennard_scaling_around_2006

&\‘\,uuw"

&

§ 2)

SN
D <)
Qb A

Why Multicore?

Performance 1.9x

Power 1 7x
Performance 1.0x

Power 1 0%
Performance 0.8

Power -O.le

Performance 1 1 6%
Power 1 00x
Cornell Bowers CIS .

Computer Science

Single-Core
Overclocked +20%

Single-Core

Single-Core
Underclocked -20%

Dual-Core
Underclocked -20%

19

Next

So, How do we get performance, especially with an
increasing number of transistors?

Sy | Cornell Bowers CIS

%2 | Computer Science

&\‘\,umyq

&

§ 2)

L&)
S %)
Qb A

Performance Improvement 101

seconds instructions cycles
—— — —— X
program program Instruction

Cornell Bowers GIS
Computer Science

X

seconds

cycle

21

T

&

& 2)

SN
S %)
Qb A

Performance Improvement 101

seconds instructions cycles y seconds
- —— X

program program instruction cycle

Fxamples:

Single-cycle = Multi-cycle
Clock period, B8 CP
CISC =2 RISC
insn count, E3 CPI, B8 Clock period
Pipelining
Cornell Bowers CIS Clock period, CP

Computer Science

22

Increasing Clock Frequencies

Darling of performance improvement for decades

Why is this no longer the strategy?

Hitting Frequency Limits:

Power = Capacitive load x Voltage® x Frequency

o _ _
H eat 10,000 o000 3600 2667 3300 3400
o O g |
* Power T 1000 +
% Clock Rate 2qq _
£ 1004 66> o
o =
¥ s 1© B P
. ower 7]
S 104 O =
33 4.1 4.9]
L | | | | |
Oy 9T Lo Eo T owg T T 0wl w5~
88 83 33 23 53 25 £33 925 282 gES
Cornell Bowers CIS ST 8T aT §FT ET £§55 35 stq 358 328
“&y | Computer Science g2 §ESFa0Og="ocT "2

80 ’%‘
=
60 =
2
40 B
20

23

‘\.,,\‘\-“""'54

S

51 %)

) ‘:J 5
60)
Q8 A2

Increasing Clock Frequencies

Darling of performance improvement for decades

Why is this no longer the strategy?

Hitting Frequency Limits:
* Heat

* Power

* Pipeline depth

* Technology Scaling
* Intel retires “tick-tock” development model (2016)
* Intel hits 10nm goals and signals a shift away from traditional CPUs (2019)

Cornell Bowers GIS
Computer Smencm

24

https://arstechnica.com/information-technology/2016/03/intel-retires-tick-tock-development-model-extending-the-life-of-each-process/
https://arstechnica.com/gadgets/2019/10/intels-10nm-process-is-on-track-so-is-shift-in-business-model/

UN,
&> Y
&
4 2)
NG
S %)
Q8 A2

Improving GPI/IPC via ILP

You've seen:
Exploiting Intra-instruction parallelism:
Pipelining (decode A while fetching B)

You haven't seen:

Exploiting Instruction Level Parallelism (ILP):

* Multiple issue (2-wide, 4-wide, etc.)
* Dynamic Scheduling (O00)

Cornell Bowers GIS
Computer Science

25

&“um%’

&

& 2)

SN
S %)
Qb A

Static Multiple Issue

a.k.a. Very Long Instruction Word (VLIW)
Compiler pairs instructions

Example: Static Dual-Issue 32-bit RISC-V, 64-bit pairs
1. ALU/Branch instruction (or nop)
2. Load/Store instruction (or nop)

How does HW detect and resolve hazards?

't doesn’t. @ Compiler must avoid hazards
Insn Addr Insn type Pipeline Stages

n JAtubench | IF | © | ex lwew]we | |
04 ltoasore | IF | © | ex [wew | ws | |

nvs [Atubenon || F | o | ex [wew|we |
012 ltoassre | | IF | © | ex [wew|we |
PR .20 [Losasiore | | | IF | 1D | Ex | mEm| we_

leduling Example

Loop: 0(sl) # tO=array element

add tO, t0, s2 # add scalar 1n s?2

sw t0, 0(sl) # store result

addi sl1, s1,-4 # decrement pointer

bne sl, zero, Loop # branch sl1!=0
ALU/branch Load/store cycle

Loop: nop lw 0, 0(s1) 1

addisl,sl,—4 nop 2
add t0, t0, s2 nop 3
bne s1, zero, Loop sw 10, 4(s1) 4

=% | Cornell Bowers CIS
& | Computer Science

‘\«,,\“‘“""'e,,

S

51 %)

) ‘:J 5
60)
Q8 A2

Improving IPC via ILP

Exploiting Intra-instruction parallelism:
Pipelining (decode A while fetching B)

Exploiting Instruction Level Parallelism (ILP):

* Multiple issue (2-wide, 4-wide, etc.)
* Dynamic Scheduling (O00)

Cornell Bowers GIS
Computer Science

28

é«,,\“-“""'e,

S

51 %)

) ‘:J 5
60)
Q8 A2

Dynamic Scheduling

Speculation/Out-of-order Execution
* Fetch many instructions
» Execute the ones whose inputs are ready
e Guess results of branches, loads, etc.
* Roll back/Flush/Zap it guesses were wrong

* Don’t commit results until all previous insns committec
e fetch in order, execute 000, commit in order

Cornell Bowers GIS
Computer Science

29

‘,e"““"“'c,

&

4 2)

SN
S %)
Qb A

Effectiveness of 000 Superscalar

Kept improving performance... until it stopped
2-wide? Yes pleasel 4-wide? Also great. 87 167

Limiting factors:
* Program dependencies

Memory dependence detection = be conservative
- e.g. Pointer Aliasing: A[0] +=1; B[0] "= 2;
Hard to expose parallelism
- Still limited by the fetch stream of the static program
Structural limits

- Memory delays and limited bandwidth
Hard to keep pipelines full, especially with branches

Cornell Bowers GIS
Computer Science

30

T

&

§ 2)

SN
S %)
Qb A

Improving IPC via k@ TLP

ILP reachingits limits. ..
Look Tor parallelism at a different granularity

Introducing: Thread-Level parallelism
Threads are separate tasks within the same process

Threads can run:

* On separate cores

* Taking turns on one core

* On one core at the same time (hyperthreading)

Cornell Bowers GIS
Computer Science

31

é«,,\“-“""'e,

S

51 %)

) ‘:J 5
60)
Q8 A2

What is a thread?

Process: multiple threads, code, data and OS state

Threads: concurrent computations that share the same address space
e Share: code, data, files

* Do notshare: registers or stack

Cornell Bowers CIS

. 32
Computer Science

‘\.,,\‘\-“""'54

&

4 2

NS
S 5
Qb A

Threads vs Processes

Threads
* Create
*join
* Defined by
» Stack, SP, PC, registers

* Multiple threads share

 address space (text, data, heap) ,
files

Cornell Bowers GIS
Computer Science

Processes
 fork (and exec)
e walt

* Defined by

* SP, PC, registers, address space

33

Thread Memory Layout

Thread 1 Stack 1
SP

PCH

Stack 2

Thread 2
SP-

PC+
Thread

(Heap subdivided, shared, & not shown.)

| Cornell Bowers CIS
w2 | Computer Science

Power Efficiency

CPU Year Clock Pipeline | Issue | Out-of-order/ | Cores | Power
Rate Stﬂes width | Speculation
486 1989 | 25MHz¢y | (5) 1 No 1 [(5w)
Pentium 1993 | 66MHZz 5 2 No 1 10W
Pentium Pro | 1997 | 200MHz 10 3 Yes 1 29W
P4 Willamette | 2001 | 2000MHz 22 3 Yes 1 75W
UltraSparc Il | 2003 | 1950MHz 14 4 No 1 90w
P4 Prescott 2004 | 3600MHz ’ Z 31) 3 Yes 1 (103W5

Cornell Bowers GIS
Computer Science

Those simpler cores did something very right.

35

&\‘\,uuw"

&

§ 2)

SN
D <)
Qb A

Why Multicore?

Performance 1.9x

Power 1 7x
Performance 1.0x

Power 1 0%
Performance 0.8

Power -O.le

Performance 1 1 6%
Power 1 00x
Cornell Bowers CIS .

Computer Science

Single-Core
Overclocked +20%

Single-Core

Single-Core
Underclocked -20%

Dual-Core
Underclocked -20%

36

Power Efficiency

CPU Year Clock Pipeline | Issue | Out-of-order/ | Cores | Power
Rate Stﬂes width | Speculation
486 1989 | 25MHz | (5) 1 No 1 [(5w)
Pentium 1993 | 66MHz 5 2 No 1 10W
Pentium Pro | 1997 | 200MHz 10 3 Yes 1 29W
P4 Willamette | 2001 | 2000MHz | 22 3 Yes 1 75W
UltraSparc Ill | 2003 | 1950MHz L{ 4 No 1 90W
P4 Prescott | 2004 | 3600MHz | (31) 3 Yes 1 [Gosw)
Core 2006 | 2930MHz | 14 4 Yes 2 | 75W
Core i5 Nehal | 2010 | 3300MHz 14 4 Yes 1 87W
Core i5 Ivy Br | 2012 | 3400MHz | 14 4 Yes 8\ |/77TW\
UltraSparc T1 | 2005 | 1200MHz | 6 1 No \ 8) |[\7ow

Cornell Bowers GIS
Computer Science

Those simpler cores did something very right.

37

éﬁ'\‘\,lllllly{’

S

51 %)

) ‘:J 5
60)
Q8 A2

Parallel Programming

So lets just all use multicore from now on!
... but software must be written as parallel program

Multicore difficulties
* Partitioning work
» Coordination & synchronization
« Communications overhead
* How do you write parallel programs?

.. without knowing exact underlying architecture?

Cornell Bowers GIS
Computer Science

38

&\‘\,umye,

&

& 2)

SN
S %)
Qb A

Work Partitioning

Partition work so all cores have something to do

Might Get:

Want:

comelbonesc\N A That's i the parts are parallelizable

Computer Science

39

&\‘\,umye'

&

& 2

SN
S 5
Qb A

Amdahl’s Law

T tasks have a serial part and a parallel part. ..
Fxample: B T

1. divide input data into n pieces T
2. dowork on each piece

3. combine all results

Amdahl’s Law. As # of cores increases ...

* time to execute parallel part? goes to zero

* time to execute serial part? ~ remains the same

 Serial part eventually dominates

Cornell Bowers GIS
Computer Science

40

éﬁ'\‘\,lllllly{’

S

51 %)

) ‘:J 5
60)
Q8 A2

Parallel Programming

So lets just all use multicore from now on!
... but software must be written as parallel program

Multicore difficulties
* Partitioning work
» Coordination & synchronization
« Communications overhead
* How do you write parallel programs?

.. without knowing exact underlying architecture?

Cornell Bowers GIS
Computer Science

41

Big Picture: Parallelism and Synchronization

How do | take advantage of parallelism?

How do | vvrite[(correct)]parallel Drograms?

What primitives do | need to implement correct parallel programs?

	Parallelism, Multicore, and Synchronization
	Parallelism & Synchronization
	xkcd/619
	Big Picture: Multicore and Parallelism
	Big Picture: Multicore and Parallelism
	Big Picture: Multicore and Parallelism
	Big Picture: Multicore and Parallelism
	Pitfall: Amdahl’s Law
	Amdahl’s Law
	Scaling Example
	Takeaway
	Big Picture: Multicore and Parallelism
	Answer Part I: Moore’s Law
	Moore’s Law
	Slide Number 15
	Why Multicore?
	Answer Part II: Power Limits
	Answer Part II: Power Limits
	Why Multicore?
	Next
	Performance Improvement 101
	Performance Improvement 101
	Increasing Clock Frequencies
	Increasing Clock Frequencies
	Improving CPI/IPC via ILP
	Static Multiple Issue
	Scheduling Example
	Improving IPC via ILP
	Dynamic Scheduling
	Effectiveness of OoO Superscalar
	Improving IPC via ILP TLP
	What is a thread?
	Threads vs Processes
	Thread Memory Layout
	Power Efficiency
	Why Multicore?
	Power Efficiency
	Parallel Programming
	Work Partitioning
	Amdahl’s Law
	Parallel Programming
	Big Picture: Parallelism and Synchronization

