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Parallelism & Synchronization
Multicore  more cores!
Cache Coherency
• Processors cache shared data   they see different (incoherent) values for the same memory location

Threads
•      Mechanism to take advantage of parallelism

Synchronizing parallel programs
• Atomic Instructions

• HW support for synchronization

How to write parallel programs
• Threads and processes

• Critical sections, race conditions, and mutexes
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Big Picture: Multicore and Parallelism
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Big Picture: Multicore and Parallelism
Why do I need four computing cores on my phone?!
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Big Picture: Multicore and Parallelism
Why do I need eight computing cores on my phone?!
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Big Picture: Multicore and Parallelism
Why do I need sixteeen computing cores on my phone?!



Pitfall: Amdahl’s Law
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Amdahl’s Law
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Scaling Example
Workload: sum of 10 scalars, and 10 × 10 matrix sum

• Speed up from 10 to 100 processors?

Single processor: Time = (10 + 100) × tadd

10 processors
• Time = 100/10 × tadd + 10 × tadd = 20 × tadd• Speedup = 110/20 = 5.5

100 processors
• Time = 100/100 × tadd + 10 × tadd = 11 × tadd• Speedup = 110/11 = 10 

Assumes load can be balanced across processors
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Takeaway
Unfortunately, we cannot not obtain unlimited scaling (speedup) by 
adding unlimited parallel resources, eventual performance is 
dominated by a component needing to be executed sequentially.  
Amdahl's Law is a caution about this diminishing return

11



Big Picture: Multicore and Parallelism
Why do I need sixteeen computing cores on my phone?!
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Answer Part I: Moore’s Law
• Electrical Switch

• On/Off
• Binary

• Transistor
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The first transistor on a 
workbench at AT&T Bell Labs in 
1947



Moore’s Law
• 1965

• # of transistors integrated on a die doubles every 18-24 months (i.e., grows 
exponentially with time)

• Amazingly visionary 
• 2300 transistors, 1 MHz clock (Intel 4004) - 1971
• 16 Million transistors (Ultra Sparc III)
• 42 Million transistors, 2 GHz clock (Intel Xeon) – 2001
• 55 Million transistors, 3 GHz, 130nm technology, 250mm2 die (Intel Pentium 4) – 2004
• 290+ Million transistors, 3 GHz (Intel Core 2 Duo) – 2007
• 721 Million transistors, 2 GHz (Nehalem) - 2009
• 1.4 Billion transistors, 3.4 GHz Intel Haswell (Quad core) – 2013
• 7.2 Billion transistors, 3-3.9 GHz Intel Broadwell (22-core) – 2016
• 20 Billion transistors, 3.49 GHz Apple M2 (8 core) — 2022
• 28 Billion transistors, 4.4 GHz Apple M4 (16x core) — 2024   
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Why Multicore?
Moore’s law

• A law about transistors
• Smaller means more transistors per die
• And smaller means faster too

But: Power consumption growing too…
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Answer Part II: Power Limits
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Answer Part II: Power Limits
Power = capacitance * voltage2 * frequency 
In practice: Power ~ voltage3

Reducing voltage helps (a lot)
... so does reducing clock speed
Better cooling helps

The power wall
• We can’t reduce voltage further
• We can’t remove more heat

• See the end of Dennard scaling: 
https://en.wikipedia.org/wiki/Dennard_scaling#Breakdown_of_Dennard_scaling_around_2006 
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Why Multicore?
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Next 
So, How do we get performance, especially with an 
increasing number of transistors?
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seconds      instructions     cycles    seconds
program        program      instruction       cycle

Performance Improvement 101
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seconds      instructions     cycles    seconds
program        program      instruction       cycle

Performance Improvement 101

Examples:
Single-cycle  Multi-cycle
  Clock period,  CPI
CISC  RISC
     insn count,  CPI,  Clock period
Pipelining
  Clock period,  CPI
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Increasing Clock Frequencies
Darling of performance improvement for decades

Why is this no longer the strategy?

Hitting Frequency Limits:
• Heat 
• Power
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Increasing Clock Frequencies
Darling of performance improvement for decades

Why is this no longer the strategy?

Hitting Frequency Limits:
• Heat
• Power
• Pipeline depth
• Technology Scaling

• Intel retires “tick-tock”  development model (2016)
• Intel hits 10nm goals and signals a shift away from traditional CPUs (2019)

24

https://arstechnica.com/information-technology/2016/03/intel-retires-tick-tock-development-model-extending-the-life-of-each-process/
https://arstechnica.com/gadgets/2019/10/intels-10nm-process-is-on-track-so-is-shift-in-business-model/


Improving CPI/IPC via ILP
You’ve seen:
Exploiting Intra-instruction parallelism:
 Pipelining (decode A while fetching B)
You haven’t seen:
Exploiting Instruction Level Parallelism (ILP):
• Multiple issue (2-wide, 4-wide, etc.)
• Dynamic Scheduling (OoO)
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Static Multiple Issue
a.k.a. Very Long Instruction Word (VLIW)
Compiler pairs instructions
Example: Static Dual-Issue 32-bit RISC-V, 64-bit pairs

1. ALU/Branch instruction (or nop)
2. Load/Store instruction (or nop)

How does HW detect and resolve hazards?
 It doesn’t.  Compiler must avoid hazards
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Insn Addr Insn type Pipeline Stages
n ALU/branch IF ID EX MEM WB
n + 4 Load/store IF ID EX MEM WB
n + 8 ALU/branch IF ID EX MEM WB
n + 12 Load/store IF ID EX MEM WB
n + 16 ALU/branch IF ID EX MEM WB
n + 20 Load/store IF ID EX MEM WB



Loop: lw   t0, 0(s1)      # t0=array element
      add  t0, t0, s2     # add scalar in s2
      sw   t0, 0(s1)      # store result
      addi s1, s1,–4      # decrement pointer
      bne  s1, zero, Loop # branch s1!=0

Scheduling Example
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ALU/branch Load/store cycle

Loop: nop lw   t0, 0(s1) 1

addi s1, s1,–4 nop 2

add  t0, t0, s2 nop 3

bne  s1, zero, Loop sw   t0, 4(s1) 4



Improving IPC via ILP
Exploiting Intra-instruction parallelism:
 Pipelining (decode A while fetching B)

Exploiting Instruction Level Parallelism (ILP):
• Multiple issue (2-wide, 4-wide, etc.)
• Dynamic Scheduling (OoO)
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Dynamic Scheduling
Speculation/Out-of-order Execution

• Fetch many instructions
• Execute the ones whose inputs are ready
• Guess results of branches, loads, etc.
• Roll back/Flush/Zap if guesses were wrong
• Don’t commit results until all previous insns committed

• fetch in order,  execute OoO,  commit in order
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Effectiveness of OoO Superscalar
Kept improv ing performance… until it  stopped
2-w ide? Yes please!  4-w ide? Also great.  8? 16? 
Limiting factors:

• Program dependencies
• Memory dependence detection  be conservative

- e.g. Pointer Aliasing: A[0] += 1; B[0] *= 2;
• Hard to expose parallelism

- Still limited by the fetch stream of the static program
• Structural limits

- Memory delays and limited bandwidth
• Hard to keep pipelines full, especially with branches
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Improving IPC via ILP  TLP
ILP reaching its limits…
Look for parallelism at a different granularity

Introducing: Thread-Level parallelism
Threads are separate tasks within the same process

Threads can run:
• On separate cores
• Taking turns on one core
• On one core at the same time (hyperthreading)
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What is a thread?
Process: multiple threads, code, data and OS state
Threads: concurrent computations that share the same address space
• Share: code, data, files
• Do not share: registers or stack
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Threads vs Processes
Threads
• create
• join
• Defined by

• Stack, SP, PC, registers

• Multiple threads share 
• address space (text, data, heap) , 

files 

Processes
• fork (and exec)
• wait
• Defined by

• SP, PC, registers, address space
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Thread Memory Layout
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Power Efficiency
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CPU Year Clock 
Rate

Pipeline 
Stages

Issue 
width

Out-of-order/ 
Speculation

Cores Power

i486 1989 25MHz 5 1 No 1 5W
Pentium 1993 66MHz 5 2 No 1 10W
Pentium Pro 1997 200MHz 10 3 Yes 1 29W
P4 Willamette 2001 2000MHz 22 3 Yes 1 75W
UltraSparc III 2003 1950MHz 14 4 No 1 90W
P4 Prescott 2004 3600MHz 31 3 Yes 1 103W

Those simpler cores did something very right.
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Power Efficiency
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CPU Year Clock 
Rate

Pipeline 
Stages

Issue 
width

Out-of-order/ 
Speculation

Cores Power

i486 1989 25MHz 5 1 No 1 5W
Pentium 1993 66MHz 5 2 No 1 10W
Pentium Pro 1997 200MHz 10 3 Yes 1 29W
P4 Willamette 2001 2000MHz 22 3 Yes 1 75W
UltraSparc III 2003 1950MHz 14 4 No 1 90W
P4 Prescott 2004 3600MHz 31 3 Yes 1 103W

Those simpler cores did something very right.

Core 2006 2930MHz 14 4 Yes 2 75W
Core i5 Nehal 2010 3300MHz 14 4 Yes 1 87W
Core i5 Ivy Br 2012 3400MHz 14 4 Yes 8 77W
UltraSparc T1 2005 1200MHz 6 1 No 8 70W



Parallel Programming
So lets just all use multicore from now on!
… but software must be written as parallel program

Multicore diff iculties
• Partitioning work
• Coordination & synchronization
• Communications overhead
• How do you write parallel programs?

... without knowing exact underlying architecture?
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Work Partitioning
Partition work so all cores have something to do

Want:
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Might Get:

And that's if the parts are parallelizable



Amdahl’s Law
If tasks have a serial part and a parallel part…
Example: 
1. divide input data into n pieces
2. do work on each piece
3. combine all results

Amdahl’s Law.  As # of cores increases …
• time to execute parallel part? 
• time to execute serial part?
• Serial part eventually dominates 
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goes to zero
remains the same



Parallel Programming
So lets just all use multicore from now on!
… but software must be written as parallel program

Multicore diff iculties
• Partitioning work
• Coordination & synchronization
• Communications overhead
• How do you write parallel programs?

... without knowing exact underlying architecture?

41



Big Picture: Parallelism and Synchronization
How do I take advantage of parallelism?
How do I write (correct ) parallel programs?

What primitives do I need to implement correct parallel programs?
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