
CS3410: Computer Systems and Organization

1

LEC24: Atomicity and Synchronization

Dr. Kevin Laeufer
Wednesday, November 19, 2025

Credits: Alvisi, Bala, Bracy, Garcia, Guidi, Kao, Laeufer, Martin, McKee, Sampson, Sirer, Van Renesse, Weatherspoon

Poll: Special Topics Lectures

2

PollEv.com/cs3410

https://pollev.com/cs3410

Plan for the next 2 lectures.

3

• Review: Threads and Race Conditions

• Synchronization:

• LR/SC

• Atomic Increment,

• Critical Section

• Mutex

• Memory Consistency

• Practical Programming with Threads

Review: Threads

Threads are separate tasks within the same process.
• Shared: code, data, heap, page table, files
• Private: registers, stack, PC

Processes, on the other hand:
• Use separate page tables.
• Need to be isolated (trust boundary).

4

Review: Race conditions
Occur when two threads are accessing the same memory
location and at least one access is a write.
(two concurrent reads are fine!)

Challenges of Race Conditions
• Races are intermittent, may occur rarely or in certain scenarios
• They often appear to happen randomly

Program is correct only if all possible schedules are safe

Example Race Condition: 2 threads trying to increment x

5

Review: OS vs. User-Level Threads

6

OS Threads
• preemptive context switch

allows OS to interrupt
thread at any time

• PC, SP, stack, registers
managed by OS

• can use blocking system
call

• each thread can run on a
different CPU core

User-Level Threads
• thread must yield before

context switch

• PC, SP, stack, registers
managed by library

• blocking system call would
block all other threads

• all threads share a single
CPU core

Poll: Race conditions with user-level
threads.

7

PollEv.com/cs3410

https://pollev.com/cs3410

PollEV Question

Can hardware help solve race conditions?

A. Yes, without the programmer's involvement
B. Yes, by offering helpful tools to programmers
C. Yes, and race conditions cannot be solved

without hardware support
D. No, the programmer is on their own
E. I don't know.

8

PollEv.com/cs3410

https://pollev.com/cs3410

Hardware Support for Synchronization
Atomic read & write memory operation

• Between read & write: no writes to that address
Many atomic hardware primitives

• test and set (x86)

• atomic increment (x86)

• bus lock prefix (x86)

• compare and swap (x86, ARM deprecated)

• load reserved / store conditional
(RISC-V, MIPS, ARM, PowerPC, DEC Alpha, …)

9

Synchronization in RISC-V
Load Reserved: LR.{W,D}.aqrl rd, (rs1)
“I want the value at address X. Also, start monitoring any writes to this address.”

Store Conditional: SC.{W,D}.aqrl rd, rs2, (rs1)
“If no one has changed the value at address X since the LR.{W,D}, perform this
store and tell me it worked.”

• Data at location has NOT been written to since the LR?
• SUCCESS:

• Performs the store (value in rs2 written to address in rs1)
• Returns 0 in rd

• Data at location has been written to since the LR?
• FAILURE:

• Does not perform the store
• Returns 1 in rd

10

Using LR/SC to create Atomic Increment
• Load Reserved: LR.{W,D}.aqrl rd, (rs1)
• Store Conditional: SC.{W,D}.aqrl rd, rs2, (rs1)

11

LW t0, (s1)
ADDI t0,t0,1
SW t0, (s1)

LR.W.aqrl t0, (s1)
ADDI t0,t0,1
SC.W.aqrl t0, t0,(s1)
BNEZ t0, try

try:

atomic(i++)
 ↓

Value in memory written between LR and SC ?
🡪 SC returns 1 in t0 🡪 go back & try again

i++
↓

Atomic Increment in Action

12

Time Thread A Thread B Thread A t0 Thread B t0 Mem [s1]

0 0

1

2

3

4

5

6

7

8

•Load Reserved: LR.{W,D}.aqrl rd, (rs1)
•Store Conditional: SC.{W,D}.aqrl rd, rs2, (rs1)

12

Atomic Increment in Action

13

Time Thread A Thread B Thread A t0 Thread B t0 Mem [s1]

0 0

1 try: LR.W t0, (s1) 0 0

2

3

4

5

6

7

8

•Load Reserved: LR.{W,D}.aqrl rd, (rs1)
•Store Conditional: SC.{W,D}.aqrl rd, rs2, (rs1)

13

Atomic Increment in Action

14

Time Thread A Thread B Thread A t0 Thread B t0 Mem [s1]

0 0

1 try: LR.W t0, (s1) 0 0

2 try: LR.W t0, (s1) 0 0

3

4

5

6

7

8

•Load Reserved: LR.{W,D}.aqrl rd, (rs1)
•Store Conditional: SC.{W,D}.aqrl rd, rs2, (rs1)

14

Atomic Increment in Action

15

Time Thread A Thread B Thread A t0 Thread B t0 Mem [s1]

0 0

1 try: LR.W t0, (s1) 0 0

2 try: LR.W t0, (s1) 0 0

3 ADDI t0, t0, 1 1 0 0

4

5

6

7

8

•Load Reserved: LR.{W,D}.aqrl rd, (rs1)
•Store Conditional: SC.{W,D}.aqrl rd, rs2, (rs1)

15

Atomic Increment in Action

16

Time Thread A Thread B Thread A t0 Thread B t0 Mem [s1]

0 0

1 try: LR.W t0, (s1) 0 0

2 try: LR.W t0, (s1) 0 0

3 ADDI t0, t0, 1 1 0 0

4 ADDI t0, t0, 1 1 1 0

5

6

7

8

•Load Reserved: LR.{W,D}.aqrl rd, (rs1)
•Store Conditional: SC.{W,D}.aqrl rd, rs2, (rs1)

16

Atomic Increment in Action

17

Time Thread A Thread B Thread A t0 Thread B t0 Mem [s1]

0 0

1 try: LR.W t0, (s1) 0 0

2 try: LR.W t0, (s1) 0 0

3 ADDI t0, t0, 1 1 0 0

4 ADDI t0, t0, 1 1 1 0

5 SC.W t0, t0,(s1) 0 1 1

6

7

8

•Load Reserved: LR.{W,D}.aqrl rd, (rs1)
•Store Conditional: SC.{W,D}.aqrl rd, rs2, (rs1)

Success!

17

Atomic Increment in Action

18

Time Thread A Thread B Thread A t0 Thread B t0 Mem [s1]

0 0

1 try: LR.W t0, (s1) 0 0

2 try: LR.W t0, (s1) 0 0

3 ADDI t0, t0, 1 1 0 0

4 ADDI t0, t0, 1 1 1 0

5 SC.W t0, t0,(s1) 0 1 1

6 BNEZ t0, try 0 1 1

7

8

•Load Reserved: LR.{W,D}.aqrl rd, (rs1)
•Store Conditional: SC.{W,D}.aqrl rd, rs2, (rs1)

Success!

18

Atomic Increment in Action

19

Time Thread A Thread B Thread A t0 Thread B t0 Mem [s1]

0 0

1 try: LR.W t0, (s1) 0 0

2 try: LR.W t0, (s1) 0 0

3 ADDI t0, t0, 1 1 0 0

4 ADDI t0, t0, 1 1 1 0

5 SC.W t0, t0,(s1) 0 1 1

6 BNEZ t0, try 0 1 1

7 SC.W t0, t0, (s1) 0 1 1

8

•Load Reserved: LR.{W,D}.aqrl rd, (rs1)
•Store Conditional: SC.{W,D}.aqrl rd, rs2, (rs1)

Success!

19

Atomic Increment in Action

20

Time Thread A Thread B Thread A t0 Thread B t0 Mem [s1]

0 0

1 try: LR.W t0, (s1) 0 0

2 try: LR.W t0, (s1) 0 0

3 ADDI t0, t0, 1 1 0 0

4 ADDI t0, t0, 1 1 1 0

5 SC.W t0, t0,(s1) 0 1 1

6 BNEZ t0, try 0 1 1

7 SC.W t0, t0, (s1) 0 1 1

8 BNEZ t0, try 0 1 1Failure!

•Load Reserved: LR.{W,D}.aqrl rd, (rs1)
•Store Conditional: SC.{W,D}.aqrl rd, rs2, (rs1)

Success!

20

Atomic Increment in Action

21

Time Thread A Thread B Thread A t0 Thread B t0 Mem [s1]

0 0

1 try: LR.W t0, (s1) 0 0

2 try: LR.W t0, (s1) 0 0

3 ADDI t0, t0, 1 1 0 0

4 ADDI t0, t0, 1 1 1 0

5 SC.W t0, t0,(s0) 0 1 1

6 BNEZ t0, try 0 1 1

7 SC.W t0, t0, (s1) 0 1 1

8 BNEZ t0, try 0 1 1Failure!

•Load Reserved: LR.{W,D}.aqrl rd, (rs1)
•Store Conditional: SC.{W,D}.aqrl rd, rs2, (rs1)

Thread B will now retry until its increment is
visible!

21

PollEV Question
Another HW synchronization primitive is CAS (compare-and-swap).
Which of the following is true?

A. LR/SC is more complex than CAS

B. LR/SC can be used to implement CAS

C. RISC-V does not implement CAS b/c
CAS is better suited to a CISC architecture

D. A & B

E. B & C

22

CAS new, old, (addr)

if (*addr == old) {
 *addr = new;
 new = 0; //success
} else {
 new = 1; //fail
}

PollEv.com/cs3410

https://pollev.com/cs3410

Critical Sections
• Create atomic version of every instruction?

• NO: Does not scale or solve the problem

• To eliminate races: identify Critical Sections
• Places in code where shared state is read and written
• Only 1 thread gets to execute at a time
• Others wait their turn

23

...
tmp = *cur_score; //read shared var
*cur_score = update_score(tmp); //write shared var
if (tmp > *high_score) { *high_score = tmp; } //r/w shared var
...

Critical Section!

Critical Sections
• Create atomic version of every instruction?

• NO: Does not scale or solve the problem

• To eliminate races: identify Critical Sections
• Places in code where shared state is read and written
• Only 1 thread gets to execute at a time
• Others wait their turn

24

cs_enter();
tmp = *cur_score; //read shared var
*cur_score = update_score(tmp); //write shared var
if (tmp > *high_score) { *high_score = tmp; } //r/w shared var
cs_exit();

Mutual Exclusion Lock (Mutex)
• Implementation of cs_enter() and cs_exit()

25

cs_enter(lock);
tmp = *cur_score;
*cur_score = update_score(tmp);
if (tmp > *high_score) {
 *high_score = tmp;
}
cs_exit(lock);
...

lock = 0; // global variable
 // 0 means lock is free
 // 1 means lock is taken

Thread 0

Atomically:
Wait until lock is 0, then set to 1

Set lock to 0

I am the ONLY THREAD running this code!

Mutex from LR and SC
lock = 0; // global variable @ address 0x100

 // 0 => free; 1 => taken

mutex_lock(int *lockAddr) {

}

mutex_unlock(int *lockAddr) {

...

}

26

a0 x100

?
?
?
0
?
?

memory

x100

Start Here

Mutex from LR and SC
lock = 0; // global variable @ address 0x100

 // 0 => free; 1 => taken

mutex_lock(int *lockAddr) {

 t_and_s: LI t0, 1

}

mutex_unlock(int *lockAddr) {

...

}

27

?
?
?
0
?
?

memory

x100

t0 1

a0 x100

Mutex from LR and SC
lock = 0; // global variable @ address 0x100

 // 0 => free; 1 => taken

mutex_lock(int *lockAddr) {

 t_and_s: LI t0, 1

 LR.W.aqrl t1, (a0)

}

mutex_unlock(int *lockAddr) {

...

}

28

?
?
?
0
?
?

memory

x100

t0

t1

a0

Reserved: @x100
1

x100

0

Mutex from LR and SC
lock = 0; // global variable @ address 0x100

 // 0 => free; 1 => taken

mutex_lock(int *lockAddr) {

 t_and_s: LI t0, 1

 LR.W.aqrl t1, (a0)

 BNEZ t1, t_and_s // t1 != 0 => lock busy

}

mutex_unlock(int *lockAddr) {

...

}

29

?
?
?
0
?
?

memory

x100

t0

t1

a0

Reserved: @x100
1

x100

0

Mutex from LR and SC
lock = 0; // global variable @ address 0x100

 // 0 => free; 1 => taken

mutex_lock(int *lockAddr) {

 t_and_s: LI t0, 1

 LR.W.aqrl t1, (a0)

 BNEZ t1, t_and_s // t1 != 0 => lock busy

 SC.W.aqrl t0, t0, (a0)

}

mutex_unlock(int *lockAddr) {

...

}

30

?
?
?
0
?
?

memory

x100

t0

t1

a0

Reserved: @x100
1

x100

0

Mutex from LR and SC
lock = 0; // global variable @ address 0x100

 // 0 => free; 1 => taken

mutex_lock(int *lockAddr) {

 t_and_s: LI t0, 1

 LR.W.aqrl t1, (a0)

 BNEZ t1, t_and_s // t1 != 0 => lock busy

 SC.W.aqrl t0, t0, (a0)

}

mutex_unlock(int *lockAddr) {

...

}

31

?
?
?
1
?
?

memory

x100

t0

t1

a0

Reserved: @x100

Reservation still valid!

1

x100

0

Mutex from LR and SC
lock = 0; // global variable @ address 0x100

 // 0 => free; 1 => taken

mutex_lock(int *lockAddr) {

 t_and_s: LI t0, 1

 LR.W.aqrl t1, (a0)

 BNEZ t1, t_and_s // t1 != 0 => lock busy

 SC.W.aqrl t0, t0, (a0)

}

mutex_unlock(int *lockAddr) {

...

}

32

?
?
?
1
?
?

memory

x100

t0

t1

a0

Reservation still valid!

Reserved: @x100
1

x100

0

Mutex from LR and SC
lock = 0; // global variable @ address 0x100

 // 0 => free; 1 => taken

mutex_lock(int *lockAddr) {

 t_and_s: LI t0, 1

 LR.W.aqrl t1, (a0)

 BNEZ t1, t_and_s // t1 != 0 => lock busy

 SC.W.aqrl t0, t0, (a0)

 BNEZ t0, t_and_s // t0 != 0 => lost the race

}

mutex_unlock(int *lockAddr) {

...

}

33

?
?
?
1
?
?

memory

x100

t0

t1

a0

1

x100

0

Mutex from LR and SC
lock = 0; // global variable @ address 0x100

 // 0 => free; 1 => taken

mutex_lock(int *lockAddr) {

 t_and_s: LI t0, 1

 LR.W.aqrl t1, (a0)

 BNEZ t1, t_and_s // t1 != 0 => lock busy

 SC.W.aqrl t0, t0, (a0)

 BNEZ t0, t_and_s // t0 != 0 => lost the race

}

mutex_unlock(int *lockAddr) {

SW x0, (a0);

}

34

?
?
?
1
?
?

memory

x100

t0

t1

a0

1

x100

0

Mutex from LR and SC
lock = 0; // global variable @ address 0x100

 // 0 => free; 1 => taken

mutex_lock(int *lockAddr) { // a spin lock

 t_and_s: LI t0, 1

 LR.W.aqrl t1, (a0)

 BNEZ t1, t_and_s // t1 != 0 => lock busy

 SC.W.aqrl t0, t0, (a0)

 BNEZ t0, t_and_s // t0 != 0 => lost the race

}

mutex_unlock(int *lockAddr) {

SW x0, (a0);

}

35

?
?
?
0
?
?

memory

x100

t0

t1

a0

1

x100

0

Mutex from LR and SC
lock = 0; // global variable @ address 0x100

 // 0 => free; 1 => taken

mutex_lock(int *lockAddr) { // a spin lock

 while(t_and_s(lockAddr)){}

}

int t_and_s(int *lockAddr) {

 old = *lockAddr;

 *lockAddr = 1;

 return old;

}

mutex_unlock(int *lockAddr) {

*lockAddr = 0;

}

36

?
?
?
0
?
?

memory

x100

t0

t1

a0

LR.W Atomic
SC.W

1

x100

0

x86 provides a BTS “test and set” instruction

2 threads attempt to grab the lock
mutex_lock(int *lockAddr)

37

Time Thread A Thread B ThreadA ThreadB Mem

t0 t1 t0 t1 M[a0]

0 0

1 try: LI t0, 1 try: LI t0, 1 1 1 0

2

3

4

5

6

7

8

try: LI t0, 1
LR.W.aqrl t1, (a0)
BNEZ t1, try
SC.W.aqrl t0, t0, (a0)
BNEZ t0, try

mutex_lock(int *lockAddr)

2 threads attempt to grab the lock

38

Time Thread A Thread B ThreadA ThreadB Mem

t0 t1 t0 t1 M[a0]

0 0

1 try: LI t0, 1 try: LI t0, 1 1 1 0

2 LR.W t1,(a0) 1 0 1 0

3 LR.W t1,(a0) 1 0 1 0 0

4 BNEZ t1, try BNEZ t1, try 1 0 1 0 0

5

6

7

8

What will happen?
(A) Thread A moves on to SC
(B) Thread B moves on to SC
(C) A & B both move on to SC

(D) both threads go back to try PollEv.com/cs3410

try: LI t0, 1
LR.W.aqrl t1, (a0)
BNEZ t1, try
SC.W.aqrl t0, t0, (a0)
BNEZ t0, try

https://pollev.com/cs3410

mutex_lock(int *lockAddr)

2 threads attempt to grab the lock

39

Time Thread A Thread B ThreadA ThreadB Mem

t0 t1 t0 t1 M[a0]

0 0

1 try: LI t0, 1 try: LI t0, 1 1 1 0

2 LR.W t1,(a0) 1 0 1 0

3 LR.W t1,(a0) 1 0 1 0 0

4 BNEZ t1, try BNEZ t1, try 1 0 1 0 0

5

6

7

8

try: LI t0, 1
LR.W.aqrl t1, (a0)
BNEZ t1, try
SC.W.aqrl t0, t0, (a0)
BNEZ t0, try

mutex_lock(int *lockAddr)

2 threads attempt to grab the lock

40

Time Thread A Thread B ThreadA ThreadB Mem

t0 t1 t0 t1 M[a0]

0 0

1 try: LI t0, 1 try: LI t0, 1 1 1 0

2 LR.W t1,(a0) 1 0 1 0

3 LR.W t1,(a0) 1 0 1 0 0

4 BNEZ t1, try BNEZ t1, try 1 0 1 0 0

5 SC.W t0,t0,(a0) 0 0 1

6 SC.W t0, t0,(a0) 1 0 0 0 1

7

8 Failure! Success!

try: LI t0, 1
LR.W.aqrl t1, (a0)
BNEZ t1, try
SC.W.aqrl t0, t0, (a0)
BNEZ t0, try

mutex_lock(int *lockAddr)

2 threads attempt to grab the lock

41

Time Thread A Thread B ThreadA ThreadB Mem

t0 t1 t0 t1 M[a0]

0 0

1 try: LI t0, 1 try: LI t0, 1 1 1 0

2 LR.W t1,(a0) 1 0 1 0

3 LR.W t1,(a0) 1 0 1 0 0

4 BNEZ t1, try BNEZ t1, try 1 0 1 0 0

5 SC.W t0, t0,(a0) 0 0 1

6 SC.W t0, t0,(a0) 1 0 0 0 1

7 BNEZ t0, try BNEZ t0, try 1 0 0 0 1

8

Both threads check to
see if they successfully
claimed the lock

try: LI t0, 1
LR.W.aqrl t1, (a0)
BNEZ t1, try
SC.W.aqrl t0, t0, (a0)
BNEZ t0, try

mutex_lock(int *lockAddr)

2 threads attempt to grab the lock

42

Time Thread A Thread B ThreadA ThreadB Mem

t0 t1 t0 t1 M[a0]

0 0

1 try: LI t0, 1 try: LI t0, 1 1 1 0

2 LR.W t1,(a0) 1 0 1 0

3 LR.W t1,(a0) 1 0 1 0 0

4 BNEZ t1, try BNEZ t1, try 1 0 1 0 0

5 SC.W t0, t0,(a0) 0 0 1

6 SC.W t0, t0,(a0) 1 0 0 0 1

7 BNEZ t0, try BNEZ t0, try 1 0 0 0 1

8 try: LI t0, 1 Critical section

Thread B enters
Critical section

Thread A tries again…

try: LI t0, 1
LR.W.aqrl t1, (a0)
BNEZ t1, try
SC.W.aqrl t0, t0, (a0)
BNEZ t0, try

mutex_lock(int *lockAddr)

2 threads attempt to grab the lock

43

Time Thread A Thread B ThreadA ThreadB Mem

t0 t1 t0 t1 M[a0]

0 0

1 try: LI t0, 1 try: LI t0, 1 1 1 0

2 LR.W t1,(a0) 1 0 1 0

3 LR.W t1,(a0) 1 0 1 0 0

4 BNEZ t1, try BNEZ t1, try 1 0 1 0 0

5 SC.W t0, t0,(a0) 0 0 1

6 SC.W t0, t0,(a0) 1 0 0 0 1

7 BNEZ t0, try BNEZ t0, try 1 0 0 0 1

8 try: LI t0, 1 Critical section 1 0 0 0 1

9 LR.W t1,(a0) Critical section 1 1 0 0 1

Thread B enters
Critical section

Thread A tries again…

lock is taken! Thread A must
continue trying until lock is free

try: LI t0, 1
LR.W.aqrl t1, (a0)
BNEZ t1, try
SC.W.aqrl t0, t0, (a0)
BNEZ t0, try

Problem Solved?

Thread 1

for (i = 0; i < 5; i++) {

mutex_lock(&lock);

x = x + 1;

mutex_unlock(&lock);

}

44

a) 6
b) 8
c) 10
d) Could be any of the above
e) Couldn’t be any of the above

lock and x are global variables.
What will the value of x be after
both loops finish?

lock = 0;
x = 0;

Thread 2

for (i = 0; i < 5; i++) {

mutex_lock(&lock);

x = x + 1;

mutex_unlock(&lock);

}

Memory Consistency

45

Thread 1

for (i = 0; i < 5; i++) {

mutex_lock(&lock);

x = x + 1;

mutex_unlock(&lock);

}

s: LI t0, 1

LR.W.aqrl t1, (&lock)
 BNEZ t1, s

 SC.W.aqrl t0, t0, (&lock)
 BNEZ t0, s

SW x0, (&lock);

What prevents the CPU from loading the value of &x before the lock is acquired?

What prevents the CPU from storing the new value of &x after the lock is released?

A Mental Model of Memory

46

Processor Memory

CPU

uint8_t mem[SIZE];

Store the value 42
at address 0xBC52

mem[0xBC52] = 42;

from lecture 5

A Mental Model of Memory

47

Processor Memory

CPU

uint8_t mem[SIZE];

Store the new value
of x at address

0xBC52

from lecture 5

Store 0 at address
&lock

Memory Consistency
• A memory consistency model describes how loads and stores can be

reordered within a thread and across CPU cores.

• Reordering cannot be detected in a single thread and is important for
performance. However, it can lead to correctness issues with multiple
threads.

• All our examples assume that instructions in a single thread are
executed strictly in-order. This model is called sequential consistency.

• We use .aqrl as a suffix to lr and sc to avoid reordering.

• Technically, our lock release code does not enforce ordering and is thus
incorrect.

48

Condition Variables
• We want to wait until data is available:

49

// lock protects
// data_valid and data
while(true) {
 mutex_lock(&lock);
 if(data_valid) {
 // store data
 data_valid = 0;
 }
 mutex_unlock(&lock);
}

mutex_lock(&lock);
while(data_valid == 0) {
 cond_wait(&cond, &lock);
}
// store data
data_valid = 0;
mutex_unlock(&lock);

Condition Variables
• We could just release and reacquire the lock in a loop and check our

variable. This leads to a lot of costly memory operations.

• Instead, we want to tell our operating system to let our thread sleep
until a change has happened.

• Condition variables allow a receiver to wait for a signal and a sender
to wake up the receiver when it is time.

• Spurious wakeup: it is not guaranteed that the value actually has
changed. E.g., because there were two changes: 0 → 1 → 0

• You will implement a version of condition variables in assignment 11.

50

Synchronization Variations
Reader/writer locks

• Any number of threads can hold a read lock
• Only one thread can hold the writer lock

Semaphores
• N threads can hold lock at the same time
• Used for “resource counting”

Monitors
• Concurrency-safe data structure with 1 mutex
• All operations on monitor acquire/release mutex
• One thread in the monitor at a time

Curious about these? Take CS 4410!
CS 3410 Takeaway: HW provides the primitives (e.g., LR/SC) to support
thread-level synchronization operations.

51

Summary

• Threads are great for improved performance.
• Avoiding data races is difficult.
• Critical section: program code that needs to happen

atomically
• Lock allows only one thread to enter the critical

section.
• Hardware provides synchronization primitives such as

LR and SC instructions to efficiently and correctly (!)
implement locks.

52

