Gornell Bowers GIS
Computer Science

CS3410: Computer Systems and Organization
LEC24: Atomicity and Synchronization

Dr. Kevin Laeufer
Wednesday, November 19, 2025

Credits: Alvisi, Bala, Bracy, Garcia, Guidi, Kao, Laeufer, Martin, McKee, Sampson, Sirer, Van Renesse, Weatherspoon

1



Poll: Special Topics Lectures

Obsen] O

i
:

PollEv.com/cs3410



https://pollev.com/cs3410

Plan for the next 2 lectures.

e Review: Threads and Race Conditions
e Synchronization:

e | R/SC

e Atomic Increment,

e C(Critical Section

o Mutex

e Memory Consistency
e Practical Programming with Threads



Review: Threads

Threads are separate tasks within the same process.
e Shared:. code, data, heap, page table, files
e Private: reqgisters, stack, PC

Processes, on the other hand:

e Use separate page tables.
e Need to be isolated (trust boundary).



Review: Race conditions

Occur when two threads are accessing the same memory

location and at least one access is a write.
(two concurrent reads are finel)

Challenges of Race Conditions
e Races are intermittent, may occur rarely or in certain scenarios
¢ They often appear to happen randomly

Program is correct only if all possible schedules are safe

Example Race Condition: 2 threads trying to increment X



Review: OS vs. User-Level Threads

OS Threads User-Level Threads

e preemptive context switch e thread must yield before
allows OS to interrupt context switch
thread at any time

e PC, SP, stack, registers e PC, SP, stack, reqisters
managed by OS managed by library

® can use blocking system * Dblocking system call would
call block all other threads

e ecach thread can run on a e all threads share a single

different CPU core CPU core



Poll: Race conditions with user-level
threads.

Obsen] O

i
:

PollEv.com/cs3410



https://pollev.com/cs3410

PollIEV Question

Can hardware help solve race conditions?

Yes, without the programmer's involvement
Yes, by offering helpful tools to programmers

Yes, and race conditions cannot be solved
without hardware support [m] ¥ ]

No, the programmer is on their own ot T
| don't know. 9

moO OWzr

PollEv.com/cs3410 [=] A


https://pollev.com/cs3410

Hardware Support for Synchronization

Atomic read & write memory operation
e Between read & write: no writes to that address

Many atomic hardware primitives

* test and set (x86)

* atomic increment (x86)

* Dbus lock prefix (x86)

* compare and swap (x86, ARM deprecated)

* |oad reserved / store conditional
(RISC-V, MIPS, ARM, PowerPC, DEC Alpha, ...)



Synchronization in RISC-V

Load Reserved: LR.{W,D}.aqgqrl rd, (rs1)
“l want the value at address X. Also, start monitoring any writes to this address.”

Store Conditional: SC.{W,D}.aqrl rd, rs2, (rs1)

“If no one has changed the value at address X since the LR.{W,D}, perform this
store and tell me it worked.”

e Data at location has NOT been written to since the LR?
« SUCCESS:
e Performs the store (value in rs2 written to address in rs1)
e Returns 0 inrd
e Data at location has been written to since the LR?
» FAILURE:
e Does not perform the store
e Returns 1 inrd

10



Using LR/SC to create Atomic Increment

¢ | oad Reserved: LR.{W,D}.aqrl rd, (rs1)
e Store Conditional:  SC.{W,D}.aqrl rd, rs2, (rs1)
I+ atomic(i++)
v N
LW to, (s1) try: LR.W.aqrl te, (s1)
ADDI te,te,1 _ _ _ _ 5, ADDI t0,te,1
SW t0, (s1) SC.W.aqrl te, te,(s1)

BNEZ tO, try

Value in memory written between LR and SC ?
1 SCreturns 1in t0 [ go back & try again

11



Atomic Increment in Action

* Load Reserved: LR.{W,D}.aqrl rd, (rs1)
* Store Conditional: SC.{W,D}.aqrl rd, rs2, (rs1)
Time Thread A Thread B Thread A t0 | Thread B to Mem [s1]

N|jojunn|hlWIN| RO

(00)

12




Atomic Increment in Action

* Load Reserved: LR.{W,D}.aqrl rd, (rs1)
* Store Conditional: SC.{W,D}.aqrl rd, rs2, (rs1)
Time Thread A Thread B Thread A t0 | Thread B to Mem [s1]
0
try: LR.W t0, (s1) 0 0

N|jojunn|hlWIN| RO

(00)

13




Atomic Increment in Action

* Load Reserved: LR.{W,D}.aqrl rd, (rs1)
* Store Conditional: SC.{W,D}.aqrl rd, rs2, (rs1)
Time Thread A Thread B Thread A t0 | Thread B to Mem [s1]
%)
try: LR.W t0, (s1) 0 0
try: LR.W t0, (s1) 0 0

N|jojunn|hlWIN| RO

(00)

14




Atomic Increment in Action

* Load Reserved: LR.{W,D}.aqrl rd, (rs1)
* Store Conditional: SC.{W,D}.aqrl rd, rs2, (rs1)
Time Thread A Thread B Thread A t0 | Thread B to Mem [s1]
%)
try: LR.W t0, (s1) 0 0
try: LR.W t0, (s1) 0 0
ADDI to, to, 1 1 (%] (%]

N|jojunn|hlWIN| RO

(00)

15




Atomic Increment in Action

* Load Reserved: LR.{W,D}.aqrl rd, (rs1)
* Store Conditional: SC.{W,D}.aqrl rd, rs2, (rs1)

Time Thread A Thread B Thread A t0 | Thread B to Mem [s1]
%) %)
1 |[try: LR.W t0, (s1) 0 0
2 try: LR.W t0, (s1) 0 5
3 ADDI to, to, 1 1 (%] (%]
4 ADDI to, to, 1 1 1 (%]
5
6
7

(00)

16




Atomic Increment in Action

* Load Reserved: LR.{W,D}.aqrl rd, (rs1)
* Store Conditional: SC.{W,D}.aqrl rd, rs2, (rs1)

Time Thread A Thread B Thread A t0 | Thread B to Mem [s1]
%] (%]
1 |[try: LR.W t0, (s1) 0 0
2 try: LR.W t0, (s1) 0 5
3 ADDI to, to, 1 1 (%] (%]
4 ADDI to, to, 1 1 1 (%]
5 |SC.W t0, to,(sl) _yp” 0 1 1
6 /

/ Success! —
8

17




Atomic Increment in Action

* Load Reserved: LR.{W,D}.aqrl rd, (rs1)
* Store Conditional: SC.{W,D}.aqrl rd, rs2, (rs1)

Time Thread A Thread B Thread A t0 | Thread B to Mem [s1]
%) %)
1 |[try: LR.W t0, (s1) 0 0
2 try: LR.W t0, (s1) 0 5
3 ADDI to, to, 1 1 (%] %)
4 ADDI to, to, 1 1 1 (%]
5 |SC.W t0, to,(sl) _yp” 0 1 1
6 BNEZ tO, try / 0 1 1
7 Success!

3

18




Atomic Increment in Action

* Load Reserved: LR.{W,D}.aqrl rd, (rs1)
* Store Conditional: SC.{W,D}.aqrl rd, rs2, (rs1)

Time Thread A Thread B Thread A t0 | Thread B to Mem [s1]
try: LR.W t0, (s1) 0

try: LR.W tO, (s1)

ADDI t0, to, 1

ADDI t0, to, 1

SC.W t0, to,(s1) -

N|loaoln|b|lwinvikpr|o
(OO |k
RlilR(RPR|IRPR|lOo|l®
PRI PP OO

BNEZ tO, try /
SUCCGSS! —S5SC.W tOo, to, (Sl)

(00)

19




Atomic Increment in Action

* Load Reserved: LR.{W,D}.aqrl rd, (rs1)
* Store Conditional: SC.{W,D}.aqrl rd, rs2, (rs1)

Time Thread A Thread B Thread A t0 | Thread B to Mem [s1]
0 0
1 |[try: LR.W t0, (s1) 0 0
2 try: LR.W t0, (s1) 0 5
3 |ADDI to, to, 1 1 0 0
4 ADDI t0, to, 1 1 1 0
5 |SC.W to, to,(sl1) _yp” 0 1 1
6 |BNEZ tO, try / 0 1 1
7 Success! F—T5C.W to, to, (si) 0 _p 1 1
8 Failure! EZ t0, try 0 1 1

20



Atomic Increment in Action
* Load Reserved: LR.{W,D}.aqrl rd, (rs1)

* Store Conditional: SC.{W,D}.aqrl rd, rs2, (rs1)

Time Thread A Thread B Thread A t0 | Thread B to Mem [s1]
5 0
1 |[try: LR.W t0, (s1) 0 0
2 try: LR.W t0, (s1) 0 5
3 ADDI to, (%]
4 Thread B will now retry until its increment is °
5 SC.W to, visible! 1
6 BNEZ tO, 1
7/ STTW Y, T, ST O — 1
8 Failure! EZ t0, try 0 1 1

21




PollIEV Question

Another HW synchronization primitive is CAS (compare-and-swap).

Which of the following is true?
A. LR/SC is more complex than CAS
B. LR/SC can be used to implement CAS

C. RISC-V does not implement CAS b/c
CAS is better suited to a CISC architecture

A&B

E oac Eli 4
1

*
PollEv.com/cs3410 [=] 4

22

CAS new, old, (addr)

if (*addr == o0ld) {
*addr = new;
new = 0; //success
} else {
new = 1; //fail

}



https://pollev.com/cs3410

Critical Sections

® Create atomic version of every instruction?
e NO: Does not scale or solve the problem

® To eliminate races: identify Critical Sections
e Places in code where shared state is read and written
e Only 1 thread gets to execute at a time
e Others wait their turn

Critical Section!

[tmp = *cur_score; //read shared var
*cur_score = update_score(tmp); //write shared var
&f (tmp > *high score) { *high score = tmp; } //r/w shared var

23



Critical Sections

® Create atomic version of every instruction?
e NO: Does not scale or solve the problem

® To eliminate races: identify Critical Sections
e Places in code where shared state is read and written
e Only 1 thread gets to execute at a time
e Others wait their turn

cs _enter();

tmp = *cur_score; //read shared var
*cur_score = update_score(tmp); //write shared var
if (tmp > *high score) { *high score = tmp; } //r/w shared var
cs exit();

24




Mutual Exclusion Lock (Mutex)

® Implementation of cs_enter() and cs_exit()

lock = @; // global variable
// © means lock is free
// 1 means lock is taken

cs_enter(lock); %Omically:

tmp = *cur_score; ‘ Wait until lock is 0, then setto 1
*cur score = update score(tmp);

if (tmp > *high score) {
*high score = tmp;

| am the ONLY THREAD running this code!

}
cs_exit(lock); €

Thread O —r Setlockto 0 ‘

25



Mutex from LR and SC  Start Here

lock = ©; // global variable @ address 0x100 aod X100

// @ => free; 1 => taken
mutex lock(int *lockAddr) {

memory

} X100

2 V] L V] V] o] (EV] LV

mutex_unlock(int *lockAddr) {

¥

26



Mutex from LR and SC

lock = ©; // global variable @ address ©x100 aod X100

// 0 => free; 1 => taken

mutex lock(int *lockAddr) { to 1
t and _s: LI to, 1
memory
?
?
I X100 0
?
mutex_unlock(int *lockAddr) { g

¥

27



Mutex from LR and SC

lock = ©; // global variable @ address 0x100
// @ => free; 1 => taken

mutex_ lock(int *lockAddr) { Reserved: @x100
t and _s: LI to, 1

— LR.W.agrl t1, (a®)

¥

mutex_unlock(int *lockAddr) {

¥

28

a0 X100
to 1
t1 %)
memory
?
?
X100 0 r
?
?
?




Mutex from LR and SC

lock = ©; // global variable @ address 0x100
// @ => free; 1 => taken

mutex_ lock(int *lockAddr) { Reserved: @x100
t and _s: LI to, 1
LR.W.aqrl t1, (ao9)

=l BNEZ t1, t_and_s // tl != @ => lock busy

¥

mutex_unlock(int *lockAddr) {

¥

29

ao X100
t0 1
t1 %)
memory
>
>
X100 0
>
>
>




Mutex from LR and SC

lock = ©; // global variable @ address 0x100

// @ => free; 1 => taken
mutex lock(int *lockAddr) {
t and _s: LI to, 1
LR.W.agrl t1, (a0)

Reserved: @x100

BNEZ t1, t and_s // t1 != @ => lock busy

_> SC.W.aqrl to, to, (a0)
}

mutex_unlock(int *lockAddr) {

¥

30

ad X100

t0 1

t1 e |
memory

>
?
X100 ? a
>
>




Mutex from LR and SC

lock = ©; // global variable @ address 0x100

// @ => free; 1 => taken
mutex lock(int *lockAddr) {
t and _s: LI to, 1
LR.W.agrl t1, (a0)

Reserved: @x100

BNEZ t1, t and_s // t1 != @ => lock busy

}

mutex_unlock(int *lockAddr) {

¥

31

ao X100
t0 1 |~
t1 e |
|
memory !
> L
? /',’
xlee | 1 -7""
>
>
>

Reservation still valid!



Mutex from LR and SC

lock = ©; // global variable @ address 0x100

// @ => free; 1 => taken
mutex lock(int *lockAddr) {
t and _s: LI to, 1
LR.W.agrl t1, (a0)

Reserved: @x100

BNEZ t1, t and_s // t1 != @ => lock busy

}

mutex_unlock(int *lockAddr) {

¥

32

ao X100
t0 1 |~
t1 e |
|
memory !
> L
? /',’
xleo | 1 -7~
>
>
>

Reservation still valid!



Mutex from LR and SC

lock = ©; // global variable @ address 0x100 ald X100

// @ => free; 1 => taken £0 1
mutex lock(int *lockAddr) {

t and _s: LI to, 1 t1 0

LR.W.aqrl t1, (ao9)
BNEZ t1, t and_s // t1 != @ => lock busy memory
SC.W.aqrl to, to, (a0)

_> BNEZ t0, t and s // t@ != 0 => lost the race
}

X100

mutex_unlock(int *lockAddr) {

TVILLVILLY) H oJl°v

33



Mutex from LR and SC

lock = ©; // global variable @ address 0x100 ald X100

// @ => free; 1 => taken £0 1
mutex lock(int *lockAddr) {

t and _s: LI to, 1 t1 0

LR.W.aqrl t1, (ao9)
BNEZ t1, t and_s // t1 != @ => lock busy memory
SC.W.aqrl to, to, (a0)

BNEZ tO0, t and_s // t0 I= 0 => lost the race

} X100

mutex_unlock(int *lockAddr) {
SW x0, (a0);

TVILLVILLY) H oJl°v

34



Mutex from LR and SC

lock = ©; // global variable @ address 0x100
// @ => free; 1 => taken
mutex lock(int *lockAddr) { // a spin lock
t and _s: LI to, 1
LR.W.aqrl t1, (ao9)
BNEZ t1, t and_s // t1 != @ => lock busy
SC.W.aqrl to, to, (a0)
BNEZ tO0, t and_s // t0 I= 0 => lost the race

¥

mutex_unlock(int *lockAddr) {
SW x0, (a0);

35

ao X100
t0 1
t1 %)
memory
?
>
X100 0
>
>
>




Mutex from LR and SC

lock = ©; // global variable @ address ©x100 aod X100
// 0 => free; 1 => taken £0 1
mutex lock(int *lockAddr) { // a spin lock
while(t _and_s(lockAddr)){} t1 0
}
int t _and_s(int *lockAddr) { memory
old = *lockAddr; : ?
{*lockAddr‘ -1 }LR.W Atomic >
return old; SC.W X100 %)
} :
mutex_unlock(int *lockAddr) { 5

*lockAddr = 0;
}

x86 provides a BTS “test and set” instruction

36



2 threads attempt to grab the lock

mutex_ lock(int *lockAddr)

Time | Thread A Thread B ThreadA | ThreadB Mem

try: LI tO, 1

LR.W.agrl t1, (a®) to | t1| te | t1 | Mao]

BNEZ t1, try

SC.W.aqrl te, to, (ao9) try: LI to, 1 try: LI to, 1 1 1 0

BNEZ t0, try

IN[OOD| V| PPl W|IDNIEFLP[O

37



[m] 2 m]

2 threads attempt to grab the lock gz2i%s
mutex_ lock(int *lockAddr) [=] &
Time | Thread A Thread B ThreadA | ThreadB Mem
try: LI to, 1
LR.W.agrl t1, (a0) to | tl ) to | tl | Mao]
BNEZ t1, try %) (%]
SC.W.aqrl te, te, (a0) 1 [try: LI to, 1 try: LI tO, 1 1 1 0
BNEZ t0, try 2 |LR.W t1, (a0) 1 | e | 1 0
3 LR.W t1,(a0) 1 |e| 1| e 0
4 |BNEZ t1, try BNEZ t1, try 1 | 0| 1 |oe 0
What will happen?
(A) Thread A moveson to SC
(B) Thread B moves onto SC
(C) A&B both moveonto SC
(D) both threads go back to try PollEv.com/cs3410



https://pollev.com/cs3410

2 threads attempt to grab the lock

mutex_ lock(int *lockAddr)

Time | Thread A Thread B ThreadA | ThreadB Mem
try: LI tO, 1
LR.W.aqrl t1, (a0) te | tl ) te | tl | Mao]
BNEZ t1, try (%]
SC.W.aqrl te, te, (a0) try: LI tO, 1 try: LI tO, 1 1 1 0
BNEZ t0, try LR.W t1, (a0) 1 | e | 1 0
LR.W t1,(a0) 1 | e | 1 | e 0
BNEZ t1, try BNEZ t1, try 1 0 1 0 0

IN[OO| UV Al W|IDNIFP[IO

39



2 threads attempt to grab the lock

mutex_ lock(int *lockAddr)

Time | Thread A Thread B ThreadA | ThreadB Mem
try: LI tO, 1
LR.W.agrl t1, (a0) te | tl ) te | tl | Mao]
BNEZ t1, try 0 0
SC.W.aqrl toe, te, (a0) 1 |try: LI to, 1 try: LI tO, 1 1 1 0
BNEZ t0, try 2 |LR.W t1,(a0) 1 | e | 1 0
3 LR.W t1,(a0) 1 e | 1| e 0
4 |BNEZ t1, try BNEZ t1, try 1 | e | 1| e 0
5 SC.W t0,10, (a0) o | o 1
6 |SC.W to, to,(ao) 1 | 0| e \( 1
- / \\
8 Failure! Success!

40



2 threads attempt to grab the lock

mutex_ lock(int *lockAddr)

Time | Thread A Thread B ThreadA | ThreadB Mem
try: LI to, 1
LR.W.agrl t1, (a®) te | tl | te | t1 | M[a0]
BNEZ t1, try 0 0
SC.W.aqrl toe, te, (a0) 1 |try: LI to, 1 try: LI tO, 1 1 1 0
BNEZ t0, try 2 |LR.W t1,(a0) 1 | e | 1 0
3 LR.W t1,(a0) 1 | e | 1 | e 0
4 |BNEZ t1, try BNEZ t1, try 1 | e | 1 | o 0
5 SC.W t0, 10, (ao0) @ | o 1
Both threads checkto | 6 |SC.W te, te,(ae) 1 ]ejeje] 1
see iftheysuccessfu[[y 7 |BNEZ to, try BNEZ tO, try 1 %) %) %) 1
claimed the lock 8

41



2 threads attempt to grab the lock

mutex_ lock(int *lockAddr)

Time | Thread A Thread B ThreadA | ThreadB Mem
try: LI to, 1
LR.W.agrl t1, (ao) te | tl | te | tl ) Mao]
BNEZ t1, try 0 0
SC.W.aqrl to, te, (ae) 1 |try: LI to, 1 try: LI to, 1 1 1 0
BNEZ t0, try 2 |LR.W t1,(a0) 1|l e | 1 0
3 LR.W t1,(a®) 1|0 | 1| e 0
4 |BNEZ t1, try BNEZ t1, try 1|0 | 1 | e 0
Th.re.’adBen.ters 5 SC.W t0, t0,(a0) @ | o 1
Critical section
6 |SC.W to, t0,(a0) 1|0 | o | o 1
. : 7 |BNEZ to, t BNEZ t0, t 1| 0| o | o 1
Thread A tries again... id id
8 |try: LI to, 1 Critical section

42



2 threads attempt to grab the lock

mutex_ lock(int *lockAddr)

Time | Thread A Thread B ThreadA | ThreadB Mem
try: LI tO, 1
LR.W.agrl t1, (a0) te | tl | te | tl ) Mao]
BNEZ t1, try 0 0
SC.W.aqrl to, te, (ae) 1 |try: LI to, 1 try: LI to, 1 1 1 0
BNEZ t0, try 2 |LR.W t1,(a0) 1|l e | 1 0
3 LR.W t1,(a0) 1| e | 1| e 0
4 |BNEZ t1, try BNEZ t1, try 1| 0| 1| e 0
Th.re.’adBen.ters 5 SC.W t0, t0,(a0) @ | o 1
Critical section
6 |SC.W to, to,(ad) 1| 0| o | o 1
. : 7 |BNEZ to, t BNEZ tO, t 10| o | o 1
Thread A tries again... id id
lock is taken! Thread A miist® | try: LI te, 1 Critical section 1 0 0 0 1
continue trying until lock isL[‘re% LR.W t1,(a0) Critical section 1 gl | @ | © s

43



Problem Solved?

Thread 1

for (1 =0; 1 < 5; i++) {
mutex lock(&lock);
X =X + 1;
mutex unlock(&lock);

}

a) 6

b) 8

c) 10

d) Could be any of the above
)

Couldn’t be any of the above

]

lock = 0;
X = 0;
Thread 2
for (1 =0; 1 < 5; i++) {
mutex_ lock(&lock);
X =X + 1;
mutex_unlock(&lock);

¥

lock and x are global variables.
What will the value of x be after
both loops finish?

44



Memory Consistency
Thread 1 s: LI to, 1
for (1 = 0; 1 < 5; 1+M LR.W.agrl t1, (&lock)
mutex lock(&lock); BNEZ t1, s
X = X + 1; SC.W.aqrl to, to, (&lock)
mutexunlock(&lock);\\BNEz to, s
} \

SW x0, (&lock);

What prevents the CPU from loading the value of &x before the lock is acquired?
What prevents the CPU from storing the new value of &x after the lock is released?

45



A Mental Model of Memory |from lecture 5

Store the value 42
Processor at address O©xBC52 Memory

CPU

mem[@xBC52] = u2; 5_ T mem[SIZE] p

16GB = 16 x 10243 = 24x230 = 234 = 17,179,869,184B (




A Mental Model of Memory |from lecture 5

Store the new value

Processor of x at address Memory
OxBCS52

Store 0 at address
&lock

)

uint8_t mem[SIZE];

16GB = 16 x 10243 = 24x230 = 234 = 17,179,869,184B (




Memory Consistency

e A memory consistency model describes how loads and stores can be
reordered within a thread and across CPU cores.

e Reordering cannot be detected in a single thread and is important for

performance. However, it can lead to correctness issues with multiple
threads.

e All our examples assume that instructions in a single thread are
executed strictly in-order. This model is called sequential consistency.

e We use .aqrl as a suffix to 1r and sc to avoid reordering.

e Technically, our lock release code does not enforce ordering and is thus
Incorrect.

48



Condition Variables

e \We want to wait until data is available:

// lock protects

// data valid and data mutex_lock(&lock);
while(true) { while(data_valid == 0) {
mutex lock(&lock): cond wait(&cond, &lock);
if(data_valid) { +
// store data // store data
data_valid = 0; data_valid = 0;
} mutex unlock(&lock);

mutex _unlock(&lock);



Condition Variables

e \We could just release and reacquire the lock in a loop and check our
variable. This leads to a lot of costly memory operations.

e |nstead, we want to tell our operating system to let our thread sleep
until a change has happened.

e (Condition variables allow a receiver to wait for a signal and a sender
to wake up the receiver when it is time.

e Spurious wakeup: it is not guaranteed that the value actually has
changed. E.g., because there were two changes: 0 - 1 — 0

e You will implement a version of condition variables in assignment 11.

50



Synchronization Variations

Reader/writer locks
e Any number of threads can hold a read lock
e Only one thread can hold the writer lock

Semaphores
e N threads can hold lock at the same time
e Used for “resource counting”

Monitors
e Concurrency-safe data structure with 1 mutex
e All operations on monitor acquire/release mutex
¢ One thread in the monitor at a time

Curious about these? Take CS 4410!
CS 3410 Takeaway: HW provides the primitives (e.g., LR/SC) to support
thread-level synchronization operations.

51



Summary

e Threads are great for improved performance.
e Avoiding data races is difficult.

e (Critical section: program code that needs to happen
atomically

e | ock allows only one thread to enter the critical
section.

e Hardware provides synchronization primitives such as
LR and SC instructions to efficiently and correctly (!)
iImplement locks.

52



