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Kevin Laeufer (he/him)
Visiting Lecturer

Hometown: Ithaca, NY

Ask me about: research,

bike commuting, drywall
mudding

Open OH: Monday 3pm -

4pm, Gates 425
(11/17,11/24,12/1, 12/8)

1:1 OH: Book here

e Back for 5 more lectures.
e New open office hours.

e Prof. Guidi is at
Supercomputing 2025.
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https://sc25.supercomputing.org/

CS3410: Look how far we have come!

e Numbers: base conversion, binary addition, floating point {4

e C Programming "4

e |ogic Gates, State (Registers and Latches), FemtoProc (4
e RISC-V Assembly |4
e Caches |4

e QOperating System: Processes, System Calls, Virtual Memory {4

e Parallel Programming: Threads, Synchronization: Next 3 Lectures
e Special Topics: 12/1 and 12/3

e Review: 12/8
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Plan for the next 3 lectures

e Threads:
e Applications
¢ |Implementation
e Race Conditions
e Synchronization:
e |R/SC
e Atomic Increment,
e C(Critical Section
o Mutex
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Threads

Introducing: Thread-Level parallelism

Threads are separate tasks within the same
process. They:

e Share: code, data, heap, files
* Do not share: registers or stack
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Prior Knowledge from CS2110

EI“-'E"EI
What is true about threads? #

[=]A

PollEv.com/cs3410
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https://pollev.com/cs3410

Process Question

How does control pass from
a process to the operating
system?

e You can only respond once.

e [ry keeping your answer short.
|deally, a single keyword.

O
$ +
E-

PollEv.com/cs3410
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https://pollev.com/cs3410

Case Study: Web Server

=

-~ GET/

(-]

Web Server (single Thread)
0

Alice

M GET /exam.pdf

Bob

read(“index.html”)

y _»C Process is blocked.

Waiting for read to return.

2

>

Our web server can

only process a
single request at a
time.

main thread

Operating
System
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Case Study: Web Server

(-]

-~ GET/

HTTP SERVER PROJECT

/ APAGHE

¢2

Alice

@ GET /exam.pdf

read(“index.html”)

Bob
A

‘2

read(“exam.pdf”)

>

>

main thread

‘2

Operating
System

[@loke)



Threads for Web Servers

e Web servers generally do little computation but many
I/0 operations (file system and network interactions).

e System calls block the calling process.

e Each thread is like a mini process that can wait for a
system call.

e Shared data in a web server:
logs, authentication, HTTPS certificate
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Case Study: Sieve of Eratosthenes

for (mp - Start; mp < 10000; ++mp) {
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Prime numbers

Execution on multiple cores leads to

faster computation.

if (lget(mp)) { // mp 1is prime
for (multiple = mp; &
multiple < 100000000; multiple += mp) { :
// multiple is not prime a
if (!get(multiple)) { set(multiple); } =
} :
y 50 - o
faster —

Figure 1. Sieve execution time for byte array (secs)

source: https://dl.acm.org/doi/pdf/10.1145/1065010.1065042
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https://dl.acm.org/doi/pdf/10.1145/1065010.1065042

Threads for Compute Performance

e Without threads, a single process can only run on a single
CPU core.

e Each thread can run on a different CPU core.

e |f compute and not I/O is the main concern, this is the rule
of thumb: Use as many threads as CPU cores to
optimally balance thread overhead and compute
throughput.
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Threads vs Processes

Threads Processes
e API: create + join e API: fork (and exec) + wait
e private: e private
e Stack, SP, PC, reqisters e SP, PC, reqisters, address
e shared space

e address space, files

Shared address space means that we can use the same
page table. Thus, context switching between threads
Is faster than between processes.
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Thread Memory Layout

Thread 1

Stack 1

SP
PC+

Thread 2
SP-

PC-
Thread

(Heap subdivided, shared, & not shown.)
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Aside: OS- vs. User-level Threads

Can we implement threads as a library without operating system support?
Provided by the OS:

e (Context switch on system call or preemption

User-level thread challenges:

e Allocate memory for stack? — malloc
e (Context switch?:
e (Cannot preempt
e Thread must yield
¢ A single system call blocks all threads — non-blocking system calls
e A single process can only use a single CPU core —
focus on I/O heavy workloads or map user level threads to a limited

number of OS threads
: [©0Ee)




Why (OS-level) Threads?

Performance: exploiting multiple processors
Do threads make sense on a single core?

Responsiveness
¢ threads can do work in the background

Mask long latency of /O devices
e do useful work while waiting

16
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Non-Atomicity: Case Study #1

Time You Your roomate

3:00 Arrive home

3:05 Check fridge = no milk

3:10 Leave for grocery

315 Arrive home

3:20 Buy milk Check fridge = no milk

3:25 Arrive home, milk in fridge | Leave for grocery

3:30
3:35 Buy milk /f’/\/{>
3:40 Arrive home, milk in fridge!

: [@loeke)



Non-Atomicity: Case Study #2

Thread 1 Thread 2
for (1=0; 1<5;1++) { for (1=0; 1<5;1++) {
x++ x++

J J

Assume X is a global variable in the Data Segment, initialized to 0.
What will the value of X be after both loops finish? EME
5

a)

) o ST

c) 10

d) Could be any of the above E

e) Could be any value PollEv.com/cs3410
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Non-Atomicity: Case Study #2

Thread 1 Thread 2

for (1i=0; 1<5;1++){ for (1=0; 1<5;1++)

lw t0, 0 (x) >
"""""""""""" lw t0,0(x) —*

ADDI t0,t0,1

ADDI t0O,tO0,1
sw t0,0(x) —»

sw t0, 0 (x)
}

Advanced Note: on multiple CPU cores, without Sequential
Consistency guarantees effects are even harder to explain.

19

O T1 '\:'ne
a

0 0
2 | 0 | o
2 | 1 o
o | 1 | 1
1T [ 1 [ 1
T | 1 |1

(@0



Non-Atomicity: Case Study #3

Consider two threads updating a shared variable amount:

e One thread (you) wants to decrement amount by $10K
e QOther thread (IRS) wants to decrement amount by 50%

T1 1.2

I
R
S

e o o Y‘ e o o
amount -= 10,000 amount /= 2

U

Memory clnlelifgid 100,000
e [@loeke)




Non-Atomicity: Case Study #3

We decompose the high-level C math into pseudo
assembly.

This ordering works:

T2
® $1 O0,000 ;'2.=.1oad from amount
2 =2 J 2
¢ $50,000 Tl. : store r2 to amount
rl = load from amount
¢ $4O,OOO rl = rl - 10,000
store rl to amount

Memory clnlelilld 40,000

: [@loke)



Non-Atomicity: Case Study #3

We decompose the high-level C math into pseudo

assembly.
Now we lose an update:

e $100,000
e $50,000

i

rl = load from amount
rli=rl1 - 10,000
store rl to amount

Memory

22

12

r2 = load from amount

r2-= p o 2
store r2 to amount

zlaalelilgld 50,000
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Non-Atomicity: Case Study #3

We decompose the high-level C math into pseudo
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Now we lose an update:

e $100,000
e $50,000
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rl = load from amount
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Memory
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r2 = load from amount

r2-= p o 2
store r2 to amount

zlaalelilgld 50,000
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Big Picture: Programming with threads

Within a thread: execution is sequential

Between threads?
¢ (Almost) no ordering or timing guarantees
e Might all execute on same core, or not!

Problem: difficult to program, difficult to reason about
e Behavior can depend on subtle timing differences
¢ Bugs may be impossible to reproduce

a [@loke)




Race conditions

Occur when two threads are accessing the same memory

location and at least one access is a write.
(two concurrent reads are finel)

Challenges of Race Conditions
e Races are intermittent, may occur rarely or in certain scenarios
¢ They often appear to happen randomly

Program is correct only if all possible schedules are safe

Example Race Condition: 2 threads trying to increment X

. [©0Ee)




Critical Sections

® To eliminate races: identify Critical Sections
e Places in code where shared state is read and written
e Only 1 thread gets to execute at a time
e Others wait their turn

Critical Section!

[tmp = *cur_score; //read shared var
*cur_score = update_score(tmp); //write shared var
&f (tmp > *high score) { *high score = tmp; } //r/w shared var

26 @O@




Critical Sections

® To eliminate races: identify Critical Sections
e Places in code where shared state is read and written
e Only 1 thread gets to execute at a time
e Others wait their turn

cs _enter();

tmp = *cur_score; //read shared var
*cur_score = update_score(tmp); //write shared var
if (tmp > *high score) { *high score = tmp; } //r/w shared var
cs exit();

27 @0@




Today

e Threads represent concurrent tasks within a process:
e shared: memory + address space, file descriptors
e separate: PC, stack, register values
¢ Advantages:
e Perform work during blocking 1/0
e Utilize more than one CPU core from a single process.
e Problem:
e Programmer must synchronize explicitly
e Race conditions introduce non-determinism — hard to catch bugs!

: [@loke)



