
CS3410: Computer Systems and Organization

1

LEC23: Threads

Dr. Kevin Laeufer
Monday, November 17, 2025

Credits: Alvisi, Bala, Bracy, Garcia, Guidi, Kao, Laeufer, Martin, McKee, Sampson, Sirer, Van Renesse, Weatherspoon

2

• Back for 5 more lectures.

• New open office hours.

• Prof. Guidi is at
Supercomputing 2025.

https://sc25.supercomputing.org/

CS3410: Look how far we have come!

3

• Numbers: base conversion, binary addition, floating point ✅
• C Programming ✅
• Logic Gates, State (Registers and Latches), FemtoProc ✅
• RISC-V Assembly ✅
• Caches ✅
• Operating System: Processes, System Calls, Virtual Memory ✅
• Parallel Programming: Threads, Synchronization: Next 3 Lectures

• Special Topics: 12/1 and 12/3

• Review: 12/8

Plan for the next 3 lectures

4

• Threads:

• Applications

• Implementation

• Race Conditions

• Synchronization:

• LR/SC

• Atomic Increment,

• Critical Section

• Mutex

Threads

Introducing: Thread-Level parallelism
Threads are separate tasks within the same
process. They:
• Share: code, data, heap, files
• Do not share: registers or stack

5

Prior Knowledge from CS2110

6

PollEv.com/cs3410

What is true about threads?

https://pollev.com/cs3410

Process Question

7

PollEv.com/cs3410

How does control pass from
a process to the operating
system?

● You can only respond once.

● Try keeping your answer short.
Ideally, a single keyword.

https://pollev.com/cs3410

🛑

Case Study: Web Server

8

󰞦
Alice

󰞦
Bob

GET /

main thread

📢

🛠
Operating
System

read(“index.html”)

GET /exam.pdf 🛠

Web Server (Single Thread)

Process is blocked.
Waiting for read to return.

📢

Our web server can
only process a
single request at a
time.

Case Study: Web Server

9

󰞦
Alice

󰞦
Bob

GET /

main thread

📢

🛠
Operating
System

read(“index.html”)

GET /exam.pdf 📢

read(“exam.pdf”)

📢

📢

🛠

Threads for Web Servers

• Web servers generally do little computation but many
I/O operations (file system and network interactions).

• System calls block the calling process.

• Each thread is like a mini process that can wait for a
system call.

• Shared data in a web server:
logs, authentication, HTTPS certificate

10

Case Study: Sieve of Eratosthenes
for (mp = start; mp < 10000; ++mp) {
 if (!get(mp)) { // mp is prime
 for (multiple = mp;
 multiple < 100000000; multiple += mp) {
 // multiple is not prime
 if (!get(multiple)) { set(multiple); }
 }
 }
}

Execution on multiple cores leads to
faster computation.

source: https://dl.acm.org/doi/pdf/10.1145/1065010.1065042

faster

https://dl.acm.org/doi/pdf/10.1145/1065010.1065042

Threads for Compute Performance

• Without threads, a single process can only run on a single
CPU core.

• Each thread can run on a different CPU core.

• If compute and not I/O is the main concern, this is the rule
of thumb: Use as many threads as CPU cores to
optimally balance thread overhead and compute
throughput.

12

Threads vs Processes

Threads

• API: create + join
• private:

• Stack, SP, PC, registers
• shared

• address space, files

Processes

• API: fork (and exec) + wait
• private

• SP, PC, registers, address
space

13

Shared address space means that we can use the same
page table. Thus, context switching between threads
is faster than between processes.

Thread Memory Layout

14

Data

Insns

Stack 1

PC

Thread 1

PC

PC

SP
Stack 2

Thread 2
SP

Stack 3

Thread 3
SP

(Heap subdivided, shared, & not shown.)

14

Aside: OS- vs. User-level Threads
Can we implement threads as a library without operating system support?

Provided by the OS:

• Context switch on system call or preemption

User-level thread challenges:

• Allocate memory for stack? → malloc
• Context switch?:

• Cannot preempt
• Thread must yield

• A single system call blocks all threads → non-blocking system calls
• A single process can only use a single CPU core →

focus on I/O heavy workloads or map user level threads to a limited
number of OS threads

15

Why (OS-level) Threads?
Performance: exploiting multiple processors

Do threads make sense on a single core?

Responsiveness

• threads can do work in the background

Mask long latency of I/O devices

• do useful work while waiting

16

Non-Atomicity: Case Study #1

17

Non-Atomicity: Case Study #2

18

Thread 1
for(i=0; i<5;i++){
 x++
}

Thread 2
for(i=0; i<5;i++) {
 x++
}

Assume x is a global variable in the Data Segment, initialized to 0.
What will the value of x be after both loops finish?
a) 5
b) 8
c) 10
d) Could be any of the above
e) Could be any value PollEv.com/cs3410

https://pollev.com/cs3410

Non-Atomicity: Case Study #2

19

Thread 1
for(i=0; i<5;i++){
lw t0, 0(x)

ADDI t0,t0,1
sw t0,0(x)
}

Thread 2
for(i=0; i<5;i++) {

lw t0,0(x)
ADDI t0,t0,1
sw t0,0(x)

}

0
0 0

0 00

1 11

T0 Me
mT1

0 11

0 01

1 11

Advanced Note: on multiple CPU cores, without Sequential
Consistency guarantees effects are even harder to explain.

Non-Atomicity: Case Study #3
Consider two threads updating a shared variable amount:
• One thread (you) wants to decrement amount by $10K
• Other thread (IRS) wants to decrement amount by 50%

20

Non-Atomicity: Case Study #3

We decompose the high-level C math into pseudo
assembly.

This ordering works:

• $100,000
• $50,000
• $40,000

21

Non-Atomicity: Case Study #3

We decompose the high-level C math into pseudo
assembly.

Now we lose an update:

• $100,000
• $50,000

22

Non-Atomicity: Case Study #3

We decompose the high-level C math into pseudo
assembly.

Now we lose an update:

• $100,000
• $50,000

23

Big Picture: Programming with threads

Within a thread: execution is sequential

Between threads?
• (Almost) no ordering or timing guarantees
• Might all execute on same core, or not!

Problem: difficult to program, difficult to reason about
• Behavior can depend on subtle timing differences
• Bugs may be impossible to reproduce

24

Race conditions
Occur when two threads are accessing the same memory
location and at least one access is a write.
(two concurrent reads are fine!)

Challenges of Race Conditions
• Races are intermittent, may occur rarely or in certain scenarios
• They often appear to happen randomly

Program is correct only if all possible schedules are safe

Example Race Condition: 2 threads trying to increment x

25

Critical Sections
• To eliminate races: identify Critical Sections

• Places in code where shared state is read and written
• Only 1 thread gets to execute at a time
• Others wait their turn

26

...
tmp = *cur_score; //read shared var
*cur_score = update_score(tmp); //write shared var
if (tmp > *high_score) { *high_score = tmp; } //r/w shared var
...

Critical Section!

Critical Sections
• To eliminate races: identify Critical Sections

• Places in code where shared state is read and written
• Only 1 thread gets to execute at a time
• Others wait their turn

27

cs_enter();
tmp = *cur_score; //read shared var
*cur_score = update_score(tmp); //write shared var
if (tmp > *high_score) { *high_score = tmp; } //r/w shared var
cs_exit();

Today

28

• Threads represent concurrent tasks within a process:
• shared: memory + address space, file descriptors
• separate: PC, stack, register values

• Advantages:
• Perform work during blocking I/O
• Utilize more than one CPU core from a single process.

• Problem:
• Programmer must synchronize explicitly
• Race conditions introduce non-determinism → hard to catch bugs!

