Gornell Bowers GIS
Computer Science

CS3410: Computer Systems and Organization
LEC23: Threads

Dr. Kevin Laeufer
Monday, November 17, 2025

Credits: Alvisi, Bala, Bracy, Garcia, Guidi, Kao, Laeufer, Martin, McKee, Sampson, Sirer, Van Renesse, Weatherspoon

1 [@loke)

Kevin Laeufer (he/him)
Visiting Lecturer

Hometown: Ithaca, NY

Ask me about: research,

bike commuting, drywall
mudding

Open OH: Monday 3pm -

4pm, Gates 425
(11/17,11/24,12/1, 12/8)

1:1 OH: Book here

e Back for 5 more lectures.
e New open office hours.

e Prof. Guidi is at
Supercomputing 2025.

[@loke)

https://sc25.supercomputing.org/

CS3410: Look how far we have come!

e Numbers: base conversion, binary addition, floating point {4

e C Programming "4

e |ogic Gates, State (Registers and Latches), FemtoProc (4
e RISC-V Assembly |4
e Caches |4

e QOperating System: Processes, System Calls, Virtual Memory {4

e Parallel Programming: Threads, Synchronization: Next 3 Lectures
e Special Topics: 12/1 and 12/3

e Review: 12/8

’ [@loEke]

Plan for the next 3 lectures

e Threads:
e Applications
¢ |Implementation
e Race Conditions
e Synchronization:
e |R/SC
e Atomic Increment,
e C(Critical Section
o Mutex

: [@loke)

Threads

Introducing: Thread-Level parallelism

Threads are separate tasks within the same
process. They:

e Share: code, data, heap, files
* Do not share: registers or stack

5 [©0Ee)

Prior Knowledge from CS2110

EI“-'E"EI
What is true about threads? #

[=]A

PollEv.com/cs3410

[@loeke)

https://pollev.com/cs3410

Process Question

How does control pass from
a process to the operating
system?

e You can only respond once.

e [ry keeping your answer short.
|deally, a single keyword.

O
$ +
E-

PollEv.com/cs3410

[@loke)

https://pollev.com/cs3410

Case Study: Web Server

=

-~ GET/

(-]

Web Server (single Thread)
0

Alice

M GET /exam.pdf

Bob

read(“index.html”)

y _»C Process is blocked.

Waiting for read to return.

2

>

Our web server can

only process a
single request at a
time.

main thread

Operating
System

[@loke)

Case Study: Web Server

(-]

-~ GET/

HTTP SERVER PROJECT

/ APAGHE

¢2

Alice

@ GET /exam.pdf

read(“index.html”)

Bob
A

‘2

read(“exam.pdf”)

>

>

main thread

‘2

Operating
System

[@loke)

Threads for Web Servers

e Web servers generally do little computation but many
I/0 operations (file system and network interactions).

e System calls block the calling process.

e Each thread is like a mini process that can wait for a
system call.

e Shared data in a web server:
logs, authentication, HTTPS certificate

: [@loke)

Case Study: Sieve of Eratosthenes

for (mp - Start; mp < 10000; ++mp) {

12

22

32

42

52

62

72

82

92

102 103

112 113 114 115

13

23

33

43

53

63

73

83

93

14

24

34

44

54

64

74

84

94

104 105

15

25

35

45

55

65

75

85

95

16

26

36

46

56

66

76

86

96

17

27

37

47

57

67

77

87

97

18

28

38

48

58

68

78

98

19

29

39

49

59

69

79

89

99

10

20

30

40

50

60

70

80

90

100

106 107 108 109 110

116 117 118 119 120

Prime numbers

Execution on multiple cores leads to

faster computation.

if (lget(mp)) { // mp 1is prime
for (multiple = mp; &
multiple < 100000000; multiple += mp) { :
// multiple is not prime a
if (!get(multiple)) { set(multiple); } =
} :
y 50 - o
faster —

Figure 1. Sieve execution time for byte array (secs)

source: https://dl.acm.org/doi/pdf/10.1145/1065010.1065042

[@loke)

https://dl.acm.org/doi/pdf/10.1145/1065010.1065042

Threads for Compute Performance

e Without threads, a single process can only run on a single
CPU core.

e Each thread can run on a different CPU core.

e |f compute and not I/O is the main concern, this is the rule
of thumb: Use as many threads as CPU cores to
optimally balance thread overhead and compute
throughput.

. [©0Ee)

Threads vs Processes

Threads Processes
e API: create + join e API: fork (and exec) + wait
e private: e private
e Stack, SP, PC, reqisters e SP, PC, reqisters, address
e shared space

e address space, files

Shared address space means that we can use the same
page table. Thus, context switching between threads
Is faster than between processes.

[@loke)

Thread Memory Layout

Thread 1

Stack 1

SP
PC+

Thread 2
SP-

PC-
Thread

(Heap subdivided, shared, & not shown.)

14

Stack 2

[@loke)

Aside: OS- vs. User-level Threads

Can we implement threads as a library without operating system support?
Provided by the OS:

e (Context switch on system call or preemption

User-level thread challenges:

e Allocate memory for stack? — malloc
e (Context switch?:
e (Cannot preempt
e Thread must yield
¢ A single system call blocks all threads — non-blocking system calls
e A single process can only use a single CPU core —
focus on I/O heavy workloads or map user level threads to a limited

number of OS threads
: [©0Ee)

Why (OS-level) Threads?

Performance: exploiting multiple processors
Do threads make sense on a single core?

Responsiveness
¢ threads can do work in the background

Mask long latency of /O devices
e do useful work while waiting

16

[@loke)

Non-Atomicity: Case Study #1

Time You Your roomate

3:00 Arrive home

3:05 Check fridge = no milk

3:10 Leave for grocery

315 Arrive home

3:20 Buy milk Check fridge = no milk

3:25 Arrive home, milk in fridge | Leave for grocery

3:30
3:35 Buy milk /f’/\/{>
3:40 Arrive home, milk in fridge!

: [@loeke)

Non-Atomicity: Case Study #2

Thread 1 Thread 2
for (1=0; 1<5;1++) { for (1=0; 1<5;1++) {
x++ x++

J J

Assume X is a global variable in the Data Segment, initialized to 0.
What will the value of X be after both loops finish? EME
5

a)

) o ST

c) 10

d) Could be any of the above E

e) Could be any value PollEv.com/cs3410

: [@loeke)

https://pollev.com/cs3410

Non-Atomicity: Case Study #2

Thread 1 Thread 2

for (1i=0; 1<5;1++){ for (1=0; 1<5;1++)

lw t0, 0 (x) >
"""""""""""" lw t0,0(x) —*

ADDI t0,t0,1

ADDI t0O,tO0,1
sw t0,0(x) —»

sw t0, 0 (x)
}

Advanced Note: on multiple CPU cores, without Sequential
Consistency guarantees effects are even harder to explain.

19

O T1 '\:'ne
a

0 0
2 | 0 | o
2 | 1 o
o | 1 | 1
1T [1 [1
T | 1 |1

(@0

Non-Atomicity: Case Study #3

Consider two threads updating a shared variable amount:

e One thread (you) wants to decrement amount by $10K
e QOther thread (IRS) wants to decrement amount by 50%

T1 1.2

I
R
S

e o o Y‘ e o o
amount -= 10,000 amount /= 2

U

Memory clnlelifgid 100,000
e [@loeke)

Non-Atomicity: Case Study #3

We decompose the high-level C math into pseudo
assembly.

This ordering works:

T2
® $1 O0,000 ;'2.=.1oad from amount
2 =2 J 2
¢ $50,000 Tl. : store r2 to amount
rl = load from amount
¢ $4O,OOO rl = rl - 10,000
store rl to amount

Memory clnlelilld 40,000

: [@loke)

Non-Atomicity: Case Study #3

We decompose the high-level C math into pseudo

assembly.
Now we lose an update:

e $100,000
e $50,000

i

rl = load from amount
rli=rl1 - 10,000
store rl to amount

Memory

22

12

r2 = load from amount

r2-= p o 2
store r2 to amount

zlaalelilgld 50,000

[@loke)

Non-Atomicity: Case Study #3

We decompose the high-level C math into pseudo

assembly.
Now we lose an update:

e $100,000
e $50,000

i

rl = load from amount
rli=rl1 - 10,000
store rl to amount

Memory

23

12

r2 = load from amount

r2-= p o 2
store r2 to amount

zlaalelilgld 50,000

[@loke)

Big Picture: Programming with threads

Within a thread: execution is sequential

Between threads?
¢ (Almost) no ordering or timing guarantees
e Might all execute on same core, or not!

Problem: difficult to program, difficult to reason about
e Behavior can depend on subtle timing differences
¢ Bugs may be impossible to reproduce

a [@loke)

Race conditions

Occur when two threads are accessing the same memory

location and at least one access is a write.
(two concurrent reads are finel)

Challenges of Race Conditions
e Races are intermittent, may occur rarely or in certain scenarios
¢ They often appear to happen randomly

Program is correct only if all possible schedules are safe

Example Race Condition: 2 threads trying to increment X

. [©0Ee)

Critical Sections

® To eliminate races: identify Critical Sections
e Places in code where shared state is read and written
e Only 1 thread gets to execute at a time
e Others wait their turn

Critical Section!

[tmp = *cur_score; //read shared var
*cur_score = update_score(tmp); //write shared var
&f (tmp > *high score) { *high score = tmp; } //r/w shared var

26 @O@

Critical Sections

® To eliminate races: identify Critical Sections
e Places in code where shared state is read and written
e Only 1 thread gets to execute at a time
e Others wait their turn

cs _enter();

tmp = *cur_score; //read shared var
*cur_score = update_score(tmp); //write shared var
if (tmp > *high score) { *high score = tmp; } //r/w shared var
cs exit();

27 @0@

Today

e Threads represent concurrent tasks within a process:
e shared: memory + address space, file descriptors
e separate: PC, stack, register values
¢ Advantages:
e Perform work during blocking 1/0
e Utilize more than one CPU core from a single process.
e Problem:
e Programmer must synchronize explicitly
e Race conditions introduce non-determinism — hard to catch bugs!

: [@loke)

