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• Back for 5 more lectures.

• New open office hours.

• Prof. Guidi is at 
Supercomputing 2025.

https://sc25.supercomputing.org/


CS3410: Look how far we have come!
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• Numbers: base conversion, binary addition, floating point ✅
• C Programming ✅
• Logic Gates, State (Registers and Latches), FemtoProc ✅
• RISC-V Assembly ✅
• Caches ✅
• Operating System: Processes, System Calls, Virtual Memory ✅
• Parallel Programming: Threads, Synchronization: Next 3 Lectures

• Special Topics: 12/1 and 12/3

• Review: 12/8



Plan for the next 3 lectures
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• Threads:

• Applications

• Implementation

• Race Conditions

• Synchronization:

• LR/SC

• Atomic Increment,

• Critical Section

• Mutex



Threads

Introducing: Thread-Level parallelism
Threads are separate tasks within the same 
process. They:
• Share: code, data, heap, files
• Do not share: registers or stack
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Prior Knowledge from CS2110
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PollEv.com/cs3410

What is true about threads?

https://pollev.com/cs3410


Process Question
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PollEv.com/cs3410

How does control pass from 
a process to the operating 
system?

● You can only respond once.

● Try keeping your answer short. 
Ideally, a single keyword.

https://pollev.com/cs3410


🛑

Case Study: Web Server
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󰞦
Alice

󰞦
Bob

GET /

main thread

📢 

🛠
Operating 
System

read(“index.html”)

GET /exam.pdf 🛠

Web Server (Single Thread)

Process is blocked.
Waiting for read to return.

📢 

Our web server can 
only process a 
single request at a 
time.



Case Study: Web Server
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󰞦
Alice

󰞦
Bob

GET /

main thread

📢 

🛠
Operating 
System

read(“index.html”)

GET /exam.pdf 📢 

read(“exam.pdf”)

📢 

📢 

🛠



Threads for Web Servers

• Web servers generally do little computation but many 
I/O operations (file system and network interactions).

• System calls block the calling process.

• Each thread is like a mini process that can wait for a 
system call.

• Shared data in a web server:
logs, authentication, HTTPS certificate
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Case Study: Sieve of Eratosthenes  
for (mp = start; mp < 10000; ++mp) {
 if (!get(mp)) { // mp is prime
   for (multiple = mp;
        multiple < 100000000; multiple += mp) {
      // multiple is not prime
      if (!get(multiple)) { set(multiple); }
    }
  }
}

Execution on multiple cores leads to 
faster computation.

source: https://dl.acm.org/doi/pdf/10.1145/1065010.1065042

faster

https://dl.acm.org/doi/pdf/10.1145/1065010.1065042


Threads for Compute Performance

• Without threads, a single process can only run on a single 
CPU core.

• Each thread can run on a different CPU core.

• If compute and not I/O is the main concern, this is the rule 
of thumb: Use as many threads as CPU cores to 
optimally balance thread overhead and compute 
throughput.
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Threads vs Processes

Threads

• API: create + join
• private:

• Stack, SP, PC, registers
• shared 

• address space, files 

Processes

• API: fork (and exec) + wait
• private

• SP, PC, registers, address 
space

13

Shared address space means that we can use the same 
page table. Thus, context switching between threads 
is faster than between processes.



Thread Memory Layout
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Stack 1

PC

Thread 1

PC

PC

SP
Stack 2

Thread 2
SP

Stack 3

Thread 3
SP

(Heap subdivided, shared, & not shown.)
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Aside: OS- vs. User-level Threads
Can we implement threads as a library without operating system support?

Provided by the OS:

• Context switch on system call or preemption

User-level thread challenges:

• Allocate memory for stack? → malloc
• Context switch?:

• Cannot preempt
• Thread must yield

• A single system call blocks all threads → non-blocking system calls
• A single process can only use a single CPU core →

focus on I/O heavy workloads or map user level threads to a limited 
number of OS threads
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Why (OS-level) Threads?
Performance: exploiting multiple processors

Do threads make sense on a single core?

Responsiveness

• threads can do work in the background 

Mask long latency of I/O devices

• do useful work while waiting
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Non-Atomicity: Case Study #1
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Non-Atomicity: Case Study #2
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Thread 1
for(i=0; i<5;i++){
  x++
}

Thread 2
for(i=0; i<5;i++) { 
  x++
}

Assume x is a global variable in the Data Segment, initialized to 0.
What will the value of x be after both loops finish?
a) 5
b) 8
c) 10
d) Could be any of the above
e) Could be any value PollEv.com/cs3410

https://pollev.com/cs3410


Non-Atomicity: Case Study #2
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Thread 1
for(i=0; i<5;i++){
lw t0, 0(x)

ADDI t0,t0,1
sw t0,0(x)
}

Thread 2
for(i=0; i<5;i++) {

lw t0,0(x)
ADDI t0,t0,1
sw t0,0(x)

}

0
0 0

0 00

1 11

T0 Me
mT1

0 11

0 01

1 11

Advanced Note: on multiple CPU cores, without Sequential 
Consistency guarantees effects are even harder to explain.



Non-Atomicity: Case Study #3
Consider two threads updating a shared variable amount:
• One thread (you) wants to decrement amount by $10K
• Other thread (IRS) wants to decrement amount by 50%
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Non-Atomicity: Case Study #3

We decompose the high-level C math into pseudo 
assembly.

This ordering works:

• $100,000
•   $50,000
•   $40,000
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Non-Atomicity: Case Study #3

We decompose the high-level C math into pseudo 
assembly.

Now we lose an update:

• $100,000
•   $50,000
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Non-Atomicity: Case Study #3

We decompose the high-level C math into pseudo 
assembly.

Now we lose an update:

• $100,000
•   $50,000
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Big Picture: Programming with threads

Within a thread: execution is sequential

Between threads?
• (Almost) no ordering or timing guarantees 
• Might all execute on same core, or not!

Problem: difficult to program, difficult to reason about
• Behavior can depend on subtle timing differences
• Bugs may be impossible to reproduce
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Race conditions
Occur when two threads are accessing the same memory 
location and at least one access is a write.
(two concurrent reads are fine!)

Challenges of Race Conditions
• Races are intermittent, may occur rarely or in certain scenarios
• They often appear to happen randomly

Program is correct only if all possible schedules are safe

Example Race Condition: 2 threads trying to increment x
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Critical Sections
• To eliminate races: identify Critical Sections

• Places in code where shared state is read and written
• Only 1 thread gets to execute at a time
• Others wait their turn
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...
tmp = *cur_score;                             //read shared var
*cur_score = update_score(tmp);               //write shared var
if (tmp > *high_score) { *high_score = tmp; } //r/w shared var
...

Critical Section!



Critical Sections
• To eliminate races: identify Critical Sections

• Places in code where shared state is read and written
• Only 1 thread gets to execute at a time
• Others wait their turn
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cs_enter();
tmp = *cur_score;                             //read shared var
*cur_score = update_score(tmp);               //write shared var
if (tmp > *high_score) { *high_score = tmp; } //r/w shared var
cs_exit();



Today
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• Threads represent concurrent tasks within a process:
• shared: memory + address space, file descriptors
• separate: PC, stack, register values

• Advantages:
• Perform work during blocking I/O
• Utilize more than one CPU core from a single process.

• Problem:
• Programmer must synchronize explicitly
• Race conditions introduce non-determinism → hard to catch bugs!


