Lab this week is REVIEW and OPTIONAL #8376

Pedro Pontes Garcia STAFF i) ® 149
19 hours ago in General UNPIN STAR WATCH VIEWS

() - !
_/ Hi everyone!

1 Lab this week will be a review of topics introduced after the midterm, in preparation for the final exam.
We will have a worksheet and work through solutions together. It will NOT be open office hours like the

previous optional lab. However, we will not take attendance, so there is no obligation to attend (but we
strongly encourage it!).

See (most of) you at lab!

PS. Congrats on all the work you've done so far! Only a few more weeks and you'll be done with 3410,
which is a thorough survey of systems topics and is not at all easy, especially as a first systems class. Good
job :)

Comment Edit Delete

(> Add comment

Gornell Bowers GIS
Computer Science

i ANSD TN EORMATSE
 SEIrEYELE

HQPPU 2nd Bir%kdav Nina!

H\\ A2

3
h Y
v

CS3410: Computer Systems and Orgar;ization
LEC21: Virtual Memory

r

Professor Giulia Guidi
Wednesday, November 12, 2025

Credits: Bala, Bracy, Garcia, Guidi, Kao, Sampson, Sirer, Weatherspoon

2

Plan for Today

* Review of virtual memory so far

 Paging and virtual memory

Review of virtual memory

Big Picture: Processes

Each process requires memory to hold:
* [ts instructions (the code to run)
e |[ts data (variables, heap)

 |[ts stack (function calls, local variables)

The problem:
* In reality, multiple processes run at the same time

e They all think they’re using the same memory addresses (like address 0x400000)

: @0

Processor & Memory

* CPU address/data bus... OxFff._f

e ... routed through caches OX7ff...f
e ... 1to main memory

e |t’s simple, fast, but...

0x000...0

Processor & Memory

* So what happens when when another OXFEF . f

CPU
program Is executed concurrently on another

Ox7ff...f
Processor? SIS

 The addresses will conflict S‘S
 Even if CPUs take turns using memory bus

0x000...0

Memory

Processor & Memory

* So what happens when when another OXFEF . f

program Is executed concurrently on another OnTfff

processor?

e The addresses will conflict

 Even if CPUs take turns using memory bus

' .
e Solutions” 0X000...0

 Can we relocate second program? Memory

! @0

Can We Relocate Second Program?

Like this? Or this?

* Yes but how?

Do we split 50/507
e |f they don’t fit?
 |f not contiguous??

Do | need to recompile?

 Thisis a problem even on a single core

machine (runs multiple processes at a time)

: ©0ge)

Big Picture: Virtual Memory

Process 1 pm

Give each process an illusion that it has exclusive
access to entire main memory

3 E
Process 2 *2 “
1| 6
o_H

10

But in Reality

=
I

=

Process 1

Process 2

11

How Do We Create the lllusion?

Process 1 &) SRS

Process 2 —p 3

12

How Do We Create the lllusion?

Process 1 &l

A map of virtual
address to physical
addresses

/

The memory
management unit

(MMU) takes care of
the mapping

How Do We Create the lllusion?

Process 1

-

Process 1 wants to
access data C

Process 1 thinks it'’s
stored at addr 1

So CPU generates addr
1

e —
The addr is intercepted
by the MMU

A

MMU knows this is a
virtual address

\ __ "

MMU looks at the
mapping

The virtual addr 1 is
physical addr 9

Data at addr 9 is sent to
physical memory

Data is indeed C

The Advantages of Virtual Memory

« Easy relocation

e (Can put code/data anywhere in physical memory

e The virtual addresses are the same:; the MMU translates them

15

The Advantages of Virtual Memory

 Higher memory utilization

* The virtual memory to only load “pieces” of program that are used into RAM

* Physical memory can be overcommitted

16

The Advantages of Virtual Memory

 Easy sharing

* Processes can share the same physical memory via virtual memory mapping

17

Kernel Space

Stack

Heap

Data

Text

Picture Memory As ...

Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page

Page

frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame

frame

frame

© o000 N O U A~ W N =

=
NS

e o S
u A W N

=
(@)}

The idea behind virtual memory is that physical memory
Is divided into fixed size pages (typically 4096 bytes)

Page frames are always the same size as the pages in memory

18

Kernel Space

Stack

Heap

Data

Text

Picture Memory As ...

Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page

Page

frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame

frame

frame

© o000 N O U A~ W N =

=
NS

S o S
u A W N

=
(@)}

The idea behind virtual memory is that physical memory
Is divided into fixed size pages (typically 4096 bytes)

19

Page frame 6

Page

Page

Page
Page

frame

frame

frame

frame

11

13
16

Page frames are always the same size as the pages in memory

O o000 J o U B W N =

10

11 = physical frame number

oS0

Kernel Space

Stack

Heap

Data

Text

Picture Memory As ...

Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page

Page

frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame

frame

frame

© 00 N OO U1 &~ W N -

= = N =
oo B~ W N B O

=
(@)}

E.g., this mapping would convert virtual address page
frame 6 to a real address in physical frame 1

20

Page

Page

Page

Page
Page

frame 6

frame

frame

frame

frame

11

13
16

Page frames are always the same size as the pages in memory

© 00 N o U B~ W N =

10

11 = physical frame number

oS0

The virtual-to-physical address mapping

 The CPU generates a virtual address when running a program

 The OS wants to give each process the illusion of a contiguous, linear memory

space

 To do this, the CPU uses a page table, which is a “map” maintained by the OS that

links virtual pages to physical frames

21

The virtual address breakdown

A virtual address Is divided into:

 Page number — identifies which virtual page is being accessed

 Offset within the page — identifies the exact byte inside that page

32-bit
virtual address

[20 bit] [12-bit]
[page number] [offset]

This assuming each page = 4KB, lower 12 bits is the offset 22

Kernel Space

Stack

Heap

Data

Text

Picture Memory As ...

Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page

Page

frame
frame
frame
frame
frame

frame
frame
frame
frame
frame
frame
frame
frame
frame

frame

frame

This assuming each page = 4KB, lower 12 bits is the offset

© o0 NN O U1 B~ W N =

=
NS

S o S
u A W N

=
(@)}

OxFFFFFO00O = page starting address

OxFFFFEQQO
OxFFFFDOOO
OxFFFFC000
OxFFFFBOOO
OxFFFFAQQOQ

0x00006000
0x00005000
0x00004000
0x00003000
0x00002000
0x00001000
0x00000000

23

The values stored in page frame 6 have addresses:

OxFFFFAXXX

virtual address

[page number] [offset]

Address Translation

20-bit virtual page number 12-bit offset

s2-pitvitvaladdress - 171717 1010 1111 0000 1111 0000 1111 0000

1-1 mapping (not copied twice)

12-bit offset

0000 1111 0000

This assuming each page = 4KB, lower 12 bits is the offset 24 ‘@@@@\

Address Translator (MMU)

* Processes use virtual memory

» DRAM uses physical memory

e Memory Management Unit (MMU)

e |t’s hardware!

Physical * |t translates virtual addresses to

0 \\\\\Q“\\\\\ Agd; ;3:5 physical addresses on the fly
Process #2 p
Memory

(DRAM)

25

Address Translation: in Page Table

 OS Is responsible for managing the page tables, which the MMU uses to

translate virtual addresses to physical addresses of

o
int page_table[22¢] = {0, 5, 4, 1, ..}; Z
- -
ppn = page_table [vpn]; | R

Process’ Physical
Virtual Address Address
Space Space

o oS0

Address Translation: in Page Table

 OS Is responsible for managing the page tables, which the MMU uses to

translate virtual addresses to physical addresses of

8|

- _ . .

int page_table[22¢] = {0, 5, 4, 1, ..}; e

) o

ppn = page_tablel[vpn]; sl B

]

e Remember: 2

. . 1

 That any address 0x00001234 is x234 bytes into o[
Page C both virtual & physical Process’ Physical
VP 1 into PP 5 Virtual Address Address
Space Space

This assuming each page = 4KB, lower 12 bits is the offset 27 ‘@@@@\

Page Table Basics

* 1 page per process
e [t lives iIn memory, i.e., in a page (or more)

 The location is stored in Supervisor Page-Table Base Register

_____________________ of
8l
=4

6
5
T
1
2
1
of
Part of process state (like PC) Process’ Physical

sptbr| 0x00008000 Virtual Address ~ Address

Space Space

This assuming each page = 4KB, lower 12 bits is the offset 28

Page Table Translation

OxO0008FFF | 9x10045

0x9000000c | @XC20A3
x90000008 | ©x4123B

0x90000004 | ©x10044
0x90000000 | @x00000

31 12 11

vaddr| 0x00002

OxABC

paddr | 0x4123B

OxABC

sptbr| 0x90000000

This assuming each page = 4KB, lower 12 bits is the offset

- —
—
—
—
—~—
—
B
—
—
e
-
_—
-
—_

Ox4123BAB

0x4123B000f

0x10045000

0x10044000

0x00000000

29

oS0

Page Table Overhead

 How large is Page Table?
 The virtual address space (for each process):
e Given: total virtual memory: 232 bytes = 4GB

* Given: page size: 212 bytes = 4KB

 # entries in PageTable?

-I

30

Page Table Overhead

 How large is Page Table?

 The virtual address space (for each process):
e Given: total virtual memory: 232 bytes = 4GB

o @Given: page size: 212 bytes = 4KB

g

®

- entries in PageTable?

-I

* size of PageTable? (in bytes)

31

There’s More!

 Page Table Entry won’t be just an integer
 Meta-Data
» Valid Bits
 \What PPN means “not mapped”?
* First: not all virtual pages will be in physical memory
 Later: might not have enough physical memory to map all virtual page

 Page Permissions (e.g., Read/Write permission, Executable or not)

32

Less Simple Page Table

Physical Page

VRWX Number 0xC20A300

0

1/1/ol1] oxCc20A3 \u‘\““a\e

0 Se\| el a.\ca\ ‘)3%

Q\(\% p\(\\ls

0/1]1/0 \o%‘wap 2™ " 1490000000

1/1]0[1] 0xC20A3@F pPl ese®

1 0x4123B 2

1(1(1|0| 0x10044

0 0x4123B000

Process tries to access a page without proper permissions Data

0x10045000
0x10044000

0x00000000

20

33

Page Table Overhead

 How large is Page Table?
 The virtual address space (for each process):
e Given: total virtual memory: 232 bytes = 4GB

* Given: page size: 212 bytes = 4KB

 # entries in PageTable?

-I

* size of PageTable? (in bytes)
 The physical address space:
e Jotal physical memory: 229 bytes = 512MB

 Overhead for 10 processes?

34

Paging

 But what if process requirements > physical memory?

 Then, virtual starts earning its name

35

Paging

 But what if process requirements > physical memory?

 Then, virtual starts earning its name

 The main memory acts as a cache for secondary storage (disk):
« Swap memory pages out to disk when not in use
« Page them back in when needed

* |f a process accesses a page not in memory, a page fault occurs

36

Paging

 But what if process requirements > physical memory?

 Then, virtual starts earning its name

 The main memory acts as a cache for secondary storage (disk):
« Swap memory pages out to disk when not in use
« Page them back in when needed

* |f a process accesses a page not in memory, a page fault occurs

 Courtesy of Temporal & Spatial Locality (again!)

; @0

Kernel Space

Stack

Heap

Data

Text

Picture Memory As ...

Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page

Page

frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame

frame

frame

© 0 J o Ui A W N =

=
NS

S o S
u A W N

=
(@)}

A process might access a page which is not in memory.
E.g., the process tries to access data in page frame 8

38

Page

Page

Page

Page
Page

frame

frame

frame

frame

frame

11

13
16

O o000 J o U B W N =

10

11 = physical frame number

oS0

Kernel Space

Stack

Heap

Data

Text

Picture Memory As ...

Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page

Page

frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame

frame

frame

© 0 J o Ui A W N =

=
NS

S o S
u A W N

=
(@)}

A process might access a page which is not in memory.
E.g., the process tries to access data in page frame 8

MMU will determine that this page is not loaded, and this
witkgenerate a page fault

-

39

Page frame

Page frame

Page frame

Page frame

11

13
16

O o000 N o U B~ W N

10

11 = physical frame number

oS0

Kernel Space

Stack

Heap

Data

Text

Picture Memory As ...

Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page

Page

frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame

frame

frame

© 0 J o Ui A W N =

=
NS

S o S
u A W N

=
(@)}

A process might access a page which is not in memory.
E.g., the process tries to access data in page frame 8

MMU will determine that this page is not loaded, and this
will generate a page fault

A page fault is an interrupt

-

—"‘55555555555555555““-~+
S

40

Page frame 11

Page frame 13
Page frame 16

O 00 N O U PH

10

11 = physical frame number

oS0

Kernel Space

Stack

Heap

Data

Text

Picture Memory As ...

Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page

Page

frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame

frame

frame

© 0 J o Ui A W N =

=
NS

S o S
u A W N

=
(@)}

A process might access a page which is not in memory.
E.g., the process tries to access data in page frame 8

MMU will determine that this page is not loaded, and this
will generate a page fault

The OS handler for a page fault locates the needed page
frame on the disk, copies it to a page in memory, and
dates the page table

6

7

8
Page frame 13 9
Page frame 16 10

Page frame 8 11 = physical frame number

. oS0

Paging

Physicai Page 0XC20A3000
VRRWXD Number
0 —_—
1(1/0/1|0] 0x10045
o - 0x90000000
0 —_—

, 0x4.123B000
0 0| disk sector 200
0 O| disk sector 25
111/11/0/(1 Ox00000 0x10045000
0 _—

0x00000000

200

42

o k& Db

Page Fault Flow

. CPU accesses a virtual address = MMU looks at page table — valid bit = 0

MMU signals a page fault to the OS
OS chooses a physical frame to load the page from disk (may evict an old page)
OS updates the page table — valid bit = 1, PPN points to the physical frame

CPU retries the instruction = now it succeeds!

43

Page Fault Flow

 The valid bit in the Page =0

* |.e., the page is not in memory

* OS takes over!
 Choose a physical page to replace (tracks page usage)
e |f dirty, write to disk
 Read missing page from disk

 Takes long (~10ms), OS schedules another task

44

Swap Space

A backup area where the OS can temporarily store parts of a process’s memory
that don’t fit in DRAM

 The OS keeps active pages in DRAM and moves inactive pages to swap
when RAM is full

* This way, the total “usable®™ memory = DRAM + swap

7N
Operating System
:C:): Swapping out \—/ - Swap Space

Main Memory 4#“
Swapping in N

https://medium.com/@ahmedmansouri/the-diminishing-role-of-swap-space-in-cloud-environments-ab2e413c4013 45

Swap Space

If DRAM is full and a process needs a new page:
 The OS picks a page in DRAM to evict (LRU, etc.)

* |f the page to be evicted has been modified, it's written to swap

* Then, the new page is loaded into that freed DRAM frame

Page frame 12 ?
Page frame 13 Page frame 14 8
Page frame 14 ::::::::::::=><=::::::::::: Page frame 13 9

Page frame 12

Page frame 13 ""““---§§§§§§§§§§§§§} Page frame 12 8
to disk “swap space” Page frame 14 "‘55555555555555555“‘“-+ Page frame 13 9

46

Swap Space

Then, the OS updates the page table entry for the evicted page:

* |t marks the page as not present in memory

» |f stores the swap location (disk block) where the page lives

Page frame 12 ?
Page frame 13 Page frame 14 8
Page frame 14 :::::::::::::=’<=::::::::::: Page frame 13 9

Page frame 12

Page frame 13 ""55555555555555“““-~> Page frame 12 8
to disk “swap space” Page frame 14 "‘55555555555555555“‘“-+ Page frame 13 9

47

Conclusion

The need of a map to translate a “fake” virtual address (from process) to a
“real” physical address (in memory)

The map is a PageTable: ppn = PageTable[vpn]

A page is constant size block of virtual memory

» Often ~4KB to reduce the number of entries in a PageTable

The space overhead due to Page Table is significant.

 Two-level of Page Table significantly reduces overhead (CS4410)

48 ‘@@@@\

