
1

CS3410: Computer Systems and Organization
LEC21: Virtual Memory

Professor Giulia Guidi

Wednesday, November 12, 2025

2

Credits: Bala, Bracy, Garcia, Guidi, Kao, Sampson, Sirer, Weatherspoon

Happy 2nd Birthday Nina!

Plan for Today

• Review of virtual memory so far

3

• Paging and virtual memory

Review of virtual memory

4

Big Picture: Processes

5

Each process requires memory to hold:

• Its instructions (the code to run)

• Its data (variables, heap)

• Its stack (function calls, local variables)

The problem:

• In reality, multiple processes run at the same time

• They all think they’re using the same memory addresses (like address 0x400000)

Processor & Memory

6

• CPU address/data bus...

• … routed through caches

• … to main memory

• It’s simple, fast, but…

Processor & Memory

7

• So what happens when when another
program is executed concurrently on another
processor?

• The addresses will conflict

• Even if CPUs take turns using memory bus

Processor & Memory

8

• So what happens when when another
program is executed concurrently on another
processor?

• The addresses will conflict

• Even if CPUs take turns using memory bus

• Solutions?
• Can we relocate second program?

Can We Relocate Second Program?

9

• Yes but how?

• Do we split 50/50?

• If they don’t fit?

• If not contiguous?

• Do I need to recompile?

Like this? Or this?

• This is a problem even on a single core
machine (runs multiple processes at a time)

Big Picture: Virtual Memory

10

Give each process an illusion that it has exclusive
access to entire main memory

But in Reality

11

How Do We Create the Illusion?

12

How Do We Create the Illusion?

13

A map of virtual
address to physical

addresses

The memory
management unit

(MMU) takes care of
the mapping

How Do We Create the Illusion?
Process 1 wants to

access data C

Process 1 thinks it’s
stored at addr 1

So CPU generates addr
1

The addr is intercepted
by the MMU

MMU knows this is a
virtual address

MMU looks at the
mapping

The virtual addr 1 is
physical addr 9

Data at addr 9 is sent to
physical memory

Data is indeed C

The Advantages of Virtual Memory

15

• Easy relocation

• Loader puts code anywhere in physical memory

• The virtual mappings to give illusion of correct layout
• Can put code/data anywhere in physical memory

• The virtual addresses are the same; the MMU translates them

E.g.:

• Program A is mapped to virtual addresses 0-1 MB

• Program B is also mapped to virtual addresses 0-1 MB

A and B’s “pieces” of memory are physically at different DRAM places, but both see a contiguous
0-1 MB address space

The Advantages of Virtual Memory

16

• Higher memory utilization

• Loader puts code anywhere in physical memory

• The virtual mappings to give illusion of correct layout

• The virtual memory to only load “pieces” of program that are used into RAM

• Physical memory can be overcommitted

E.g.:

• Program A allocates 1 GB of memory but only actually accesses 100 MB

• Only those 100 MB are loaded into DRAM; the rest stays on disk

This enables multiple programs to run concurrently, even if total memory exceeds DRAM

The Advantages of Virtual Memory

17

• Easy sharing

• Loader puts code anywhere in physical memory

• The virtual mappings to give illusion of correct layout

• Processes can share the same physical memory via virtual memory mapping

•

E.g.:

• Shared libraries (like libc.so) are mapped into many processes’ virtual address spaces

• Each process sees the library at its own virtual address, but there’s only one copy in DRAM

Picture Memory As …

18

Page frame 1

Page frame 2

Page frame 3

Page frame 4

Page frame 5

Page frame 6

Page frame 7

Page frame 8

Page frame 9

Page frame 10

Page frame 11

Page frame 12

Page frame 13

Page frame 14

Page frame 15

Page frame 16

Kernel Space

Stack

Heap

Data

Text

The idea behind virtual memory is that physical memory
is divided into fixed size pages (typically 4096 bytes)

Page frames are always the same size as the pages in memory

Picture Memory As …

19

Page frame 1

Page frame 2

Page frame 3

Page frame 4

Page frame 5

Page frame 6

Page frame 7

Page frame 8

Page frame 9

Page frame 10

Page frame 11

Page frame 12

Page frame 13

Page frame 14

Page frame 15

Page frame 16

Kernel Space

Stack

Heap

Data

Text

1

2

3

4

5

6

7

8

9

10

11

The idea behind virtual memory is that physical memory
is divided into fixed size pages (typically 4096 bytes)

Page frames are always the same size as the pages in memory

Page frame 6

Page frame 4

Page frame 11

Page frame 13

Page frame 16

Physical memory

= physical frame number

Picture Memory As …

20

Page frame 1

Page frame 2

Page frame 3

Page frame 4

Page frame 5

Page frame 6

Page frame 7

Page frame 8

Page frame 9

Page frame 10

Page frame 11

Page frame 12

Page frame 13

Page frame 14

Page frame 15

Page frame 16

Kernel Space

Stack

Heap

Data

Text

1

2

3

4

5

6

7

8

9

10

11

Page frame 6

Page frame 4

Page frame 11

Page frame 13

Page frame 16

Physical memory

= physical frame number

E.g., this mapping would convert virtual address page
frame 6 to a real address in physical frame 1

Page frames are always the same size as the pages in memory

The virtual-to-physical address mapping

21

• The CPU generates a virtual address when running a program

• The OS wants to give each process the illusion of a contiguous, linear memory
space

• To do this, the CPU uses a page table, which is a “map” maintained by the OS that

links virtual pages to physical frames

The virtual address breakdown

22

A virtual address is divided into:

• Page number → identifies which virtual page is being accessed

• Offset within the page → identifies the exact byte inside that page

virtual address = [page number][offset]
32-bit = [20 bit][12-bit]

This assuming each page = 4KB, lower 12 bits is the offset

Picture Memory As …

23

Page frame 1

Page frame 2

Page frame 3

Page frame 4

Page frame 5

Page frame 6

Page frame 7

Page frame 8

Page frame 9

Page frame 10

Page frame 11

Page frame 12

Page frame 13

Page frame 14

Page frame 15

Page frame 16

Kernel Space

Stack

Heap

Data

Text
0x00000000

0x00001000

0x00002000

0x00003000

0x00004000

0x00005000

0x00006000

…

…

…

0xFFFFA000

0xFFFFB000

0xFFFFC000

0xFFFFD000

0xFFFFE000

0xFFFFF000 = page starting address

The values stored in page frame 6 have addresses:
0xFFFFAxxx

= virtual address = [page number][offset]

This assuming each page = 4KB, lower 12 bits is the offset

Address Translation

24This assuming each page = 4KB, lower 12 bits is the offset

1111 1010 1111 0000 1111 0000 1111 0000

0000 0101 1100 0011 0000 0000 1111 0000

20-bit virtual page number 12-bit offset

12-bit offset

1-1 mapping (not copied twice)

20-bit physical frame number

MMU translation

32-bit virtual address

32-bit physical address

Address Translator (MMU)

25

• Processes use virtual memory

• DRAM uses physical memory

• Memory Management Unit (MMU)

• It’s hardware!

• It translates virtual addresses to
physical addresses on the fly

Address Translation: in Page Table

26

• OS is responsible for managing the page tables, which the MMU uses to
translate virtual addresses to physical addresses

int page_table[220] = {0, 5, 4, 1, …};
…
ppn = page_table[vpn];

Address Translation: in Page Table

27

• OS is responsible for managing the page tables, which the MMU uses to
translate virtual addresses to physical addresses

• Remember:

• That any address 0x00001234 is x234 bytes into
Page C both virtual & physical

int page_table[220] = {0, 5, 4, 1, …};
…
ppn = page_table[vpn];

VP 1 into PP 5

This assuming each page = 4KB, lower 12 bits is the offset

Page Table Basics

28

• 1 page per process

• It lives in memory, i.e., in a page (or more)

• The location is stored in Supervisor Page-Table Base Register

This assuming each page = 4KB, lower 12 bits is the offset

Page Table Translation

29This assuming each page = 4KB, lower 12 bits is the offset

Page Table Overhead

30

• How large is Page Table?

• The virtual address space (for each process):

• Given: total virtual memory: 232 bytes = 4GB

• Given: page size: 212 bytes = 4KB

• # entries in PageTable?

• size of PageTable? (in bytes)• number of pages = virtual memory / page size
• number of pages = 232 / 212 = 220 = 1,048, 576 pages ~ 1 million pages

Page Table Overhead

31

• How large is Page Table?

• The virtual address space (for each process):

• Given: total virtual memory: 232 bytes = 4GB

• Given: page size: 212 bytes = 4KB

• # entries in PageTable?

• size of PageTable? (in bytes)

• A page table entry (PTE) usually stores the PFN plus some metadata (valid bit, protection
bits, etc.)

• Typically, we use 4 bytes (32 bits) per PTE (common for 32-bit physical addresses)

• Page Table size = 220 × 4 bytes = 4 × 220 bytes = 4 MB

There’s More!

32

• Page Table Entry won’t be just an integer

• Meta-Data

• Valid Bits

• What PPN means “not mapped”?

• First: not all virtual pages will be in physical memory

• Later: might not have enough physical memory to map all virtual page

• Page Permissions (e.g., Read/Write permission, Executable or not)

Less Simple Page Table

33

Process tries to access a page without proper permissions

Page Table Overhead

34

• How large is Page Table?

• The virtual address space (for each process):

• Given: total virtual memory: 232 bytes = 4GB

• Given: page size: 212 bytes = 4KB

• # entries in PageTable?

• size of PageTable? (in bytes)

• The physical address space:

• Total physical memory: 229 bytes = 512MB

• Overhead for 10 processes?

~ 1 million pages

~ 4 MB

• number of physical frames = physical memory /
page size = 229 / 212 = 217 = 131, 072 frames

• pages per process = 232 / 212 = 220 pages

• page table size per process = 4 MB

• page table overhead size= 4 MB x 10 = 40 MB

• fraction overhead = 40 / 512 MB = 7.8%

Paging

35

• But what if process requirements > physical memory?

• Then, virtual starts earning its name

• E.g., a process needs 1  GB, but physical memory is only 512  MB

• Can’t fit the entire virtual address space in DRAM at once

• Paging allows this to work by mapping only the pages that are actively used

Paging

36

• But what if process requirements > physical memory?

• Then, virtual starts earning its name

• The main memory acts as a cache for secondary storage (disk):

• Swap memory pages out to disk when not in use

• Page them back in when needed

• If a process accesses a page not in memory, a page fault occurs

Paging

37

• But what if process requirements > physical memory?

• Then, virtual starts earning its name

• Courtesy of Temporal & Spatial Locality (again!)

• The main memory acts as a cache for secondary storage (disk):

• Swap memory pages out to disk when not in use

• Page them back in when needed

• If a process accesses a page not in memory, a page fault occurs

Picture Memory As …

38

Page frame 1

Page frame 2

Page frame 3

Page frame 4

Page frame 5

Page frame 6

Page frame 7

Page frame 8

Page frame 9

Page frame 10

Page frame 11

Page frame 12

Page frame 13

Page frame 14

Page frame 15

Page frame 16

Kernel Space

Stack

Heap

Data

Text

1

2

3

4

5

6

7

8

9

10

11

Page frame 6

Page frame 4

Page frame 11

Page frame 13

Page frame 16

Physical memory

= physical frame number

A process might access a page which is not in memory.
E.g., the process tries to access data in page frame 8

Picture Memory As …
Page frame 1

Page frame 2

Page frame 3

Page frame 4

Page frame 5

Page frame 6

Page frame 7

Page frame 8

Page frame 9

Page frame 10

Page frame 11

Page frame 12

Page frame 13

Page frame 14

Page frame 15

Page frame 16

Kernel Space

Stack

Heap

Data

Text

A process might access a page which is not in memory.
E.g., the process tries to access data in page frame 8

MMU will determine that this page is not loaded, and this
will generate a page fault

2

3

4

5

6

7

8

9

10

11

Page frame 4

Page frame 11

Page frame 13

Page frame 16

Physical memory

= physical frame number

39

Picture Memory As …
Page frame 1

Page frame 2

Page frame 3

Page frame 4

Page frame 5

Page frame 6

Page frame 7

Page frame 8

Page frame 9

Page frame 10

Page frame 11

Page frame 12

Page frame 13

Page frame 14

Page frame 15

Page frame 16

Kernel Space

Stack

Heap

Data

Text

A process might access a page which is not in memory.
E.g., the process tries to access data in page frame 8

MMU will determine that this page is not loaded, and this
will generate a page fault

6

7

8

9

10

11

Page frame 13

Page frame 16

Physical memory

= physical frame number

40

A page fault is an interrupt

4

5Page frame 11

Picture Memory As …
Page frame 1

Page frame 2

Page frame 3

Page frame 4

Page frame 5

Page frame 6

Page frame 7

Page frame 8

Page frame 9

Page frame 10

Page frame 11

Page frame 12

Page frame 13

Page frame 14

Page frame 15

Page frame 16

Kernel Space

Stack

Heap

Data

Text

A process might access a page which is not in memory.
E.g., the process tries to access data in page frame 8

MMU will determine that this page is not loaded, and this
will generate a page fault

6

7

8

9

10

11

Page frame 13

Page frame 16

Physical memory

= physical frame number

41

The OS handler for a page fault locates the needed page
frame on the disk, copies it to a page in memory, and
updates the page table

Page frame 8

Paging

42

Page Fault Flow

43

1. CPU accesses a virtual address → MMU looks at page table → valid bit = 0

2. MMU signals a page fault to the OS

3. OS chooses a physical frame to load the page from disk (may evict an old page)

4. OS updates the page table → valid bit = 1, PPN points to the physical frame

5. CPU retries the instruction → now it succeeds!

Page Fault Flow

44

• The valid bit in the Page = 0

• I.e., the page is not in memory

• OS takes over!

• Choose a physical page to replace (tracks page usage)

• If dirty, write to disk

• Read missing page from disk

• Takes long (~10ms), OS schedules another task

Swap Space

45

A backup area where the OS can temporarily store parts of a process’s memory
that don’t fit in DRAM

• The OS keeps active pages in DRAM and moves inactive pages to swap
when RAM is full

• This way, the total “usable” memory = DRAM + swap

https://medium.com/@ahmedmansouri/the-diminishing-role-of-swap-space-in-cloud-environments-ab2e413c4013

Swap Space

46

If DRAM is full and a process needs a new page:

• The OS picks a page in DRAM to evict (LRU, etc.)

• If the page to be evicted has been modified, it’s written to swap

• Then, the new page is loaded into that freed DRAM frame

Page frame 13

Page frame 14

8

9Page frame 13

Page frame 14

Page frame 12 ?

Page frame 13

Page frame 14

8

9Page frame 13

Page frame 12

Page frame 12

to disk “swap space”

Swap Space

47

Then, the OS updates the page table entry for the evicted page:

• It marks the page as not present in memory

• If stores the swap location (disk block) where the page lives

Page frame 13

Page frame 14

8

9Page frame 13

Page frame 14

Page frame 12 ?

Page frame 13

Page frame 14

8

9Page frame 13

Page frame 12

Page frame 12

to disk “swap space”

Conclusion

48

• The need of a map to translate a “fake” virtual address (from process) to a
“real” physical address (in memory)

• The map is a PageTable: ppn = PageTable[vpn]

• A page is constant size block of virtual memory

• Often ~4KB to reduce the number of entries in a PageTable

• The space overhead due to Page Table is significant.

• Two-level of Page Table significantly reduces overhead (CS4410)

