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Plan for Today

• Review of system call
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• On to virtual memory!



Review of system call
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Ex: fork()

5

• fork() function prototype:

pid_t fork(pid_t pid);

• fork() is used to create a new process by duplicating the calling process

• The new process is called the child process

• The original process is called the parent process

• fork() is called, then both processes continue executing the code after the 

fork() call, but they have different PIDs



Ex: exec()
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• exec() replaces the current process image with a new process image

• Commonly used functions: execl(), execp(), execv(), etc.

• exec() function prototype:

int execl(const char *path, const char *arg, ...);

• exec() basically changes what a process does



Ex: waitpid()
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• waitpid() is used to wait for state changes in a child process
• It can be used to wait for a specific child process to terminate

• waitpid() function prototype:

pid_t waitpid(pid_t pid, int *status, int options);

Return value Return value of waitpid()

> 0 PID of the child whose state has changed

0 (only if WNOHANG used) — no child has exited yet

-1 -1



waitpid() vs wait()
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• waitpid() is used to wait for state changes in a child process
• It can be used to wait for a specific child process to terminate

• waitpid() function prototype:

pid_t waitpid(pid_t pid, int *status, int options);

Call It means…

wait(&status) It waits for any child to terminate

waitpid(-1, &status, 0) Same as wait()

waitpid(pid, &status, 0) It waits for that specific pid child



How Processes Are Terminated?
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• The system calls for termination are:

• exit(): used by a process to terminate itself
• abort(): used by a parent process to terminate a child process
• wait() and waitpid(): used by a parent process to wait for the 

termination of a child process and retrieve its exit status



False Friend kill()
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• Despite its name, kill() doesn’t necessarily kill a process; it can send any signal, 
including ones that don’t terminate the target

• kill() function prototype:

int kill(pid_t pid, int sig);

Outcome Return value of kill()

Success 0

Error -1



Conceptual RISC-V Print “Hello”
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# RISC assembly pseudo-code 
li   a7, 4          # Load system call code for 'print string' 
la   a0, msg        # Load address of message 
ecall               # Call to the OS 
... 
msg: .asciiz "Hello!"

Conventionally, a7 holds the system call number: it tells the OS which service the program is asking for

This is a special instruction that triggers a trap to the operating system (OS)

• The OS looks at a7 (system call number = 4) and a0 (address of string)

• It performs the requested service: writing “Hello!” to the terminal

PC moves from user space to kernel space (more on this later)



Interrupt
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An interrupt is a signal sent to the processor by hardware or software indicating 
an event that needs immediate attention



Poll
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PollEv.com /gguidi
Or send gguidi to 22333

What is the key difference between a hardware interrupt and a software interrupt?

https://pollev.com/gguidi


Types of Interrupt
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• Hardware Interrupt: Generated by external hardware devices to get the CPU’s attention

• Keyboard input (key press)

• Mouse movement or click

• Disk I/O completion

• Network packet arrival

Type Description

Maskable Interrupt Can be temporarily “masked” (disabled) by the CPU; used for regular hardware events

Non-Maskable Interrupt Cannot be disabled; reserved for critical events like hardware failure or power issues



Types of Interrupt
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• System calls (e.g., syscall instruction)

• Exceptions like divide-by-zero or invalid memory access

• Breakpoints during debugging

• Software Interrupt: Generated by a program or the operating system, typically to 
request a system service or perform an exception

Type Description

System Call Interrupt Triggered by a program to request OS services (e.g., file read/write)

Exception Interrupt Generated automatically when an error or specific condition occurs (divide by zero, 
page fault)

Software-Generated Signal Explicitly triggered in software (e.g., raise(), kill() in Unix)



Instruction Cycle and Interrupt
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How Interrupts Work
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• Interrupt Signal 

• An interrupt signal is sent to the CPU by a hardware device or software

• Saving State

• The CPU saves the current state of the running process (e.g., program counter, 

registers) so it can resume execution later

• Interrupt Handling

• The CPU transfers control to the interrupt handler associated with the interrupt. The 

interrupt handler processes the event (e.g., reading data from a device)

• Restoring State

• The CPU restores the saved state and resumes execution of the interrupted process



Ok, introduction to virtual memory
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Process = running program

Syscall = how it asks the kernel to do privileged work on its behalf



Big Picture: Processes
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Each process requires memory to hold:


• Its instructions (the code to run)


• Its data (variables, heap)


• Its stack (function calls, local variables)

The problem:


• In reality, multiple processes run at the same time


• They all think they’re using the same memory addresses (like address 0x400000)



Multi-Core Processor
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Processor & Memory
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• CPU address/data bus...

• … routed through caches

• … to main memory

• It’s simple, fast, but…



Processor & Memory
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• So what happens when when another 
program is executed concurrently on another 
processor?

• The addresses will conflict 

• Even if CPUs take turns using memory bus



Processor & Memory
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• So what happens when when another 
program is executed concurrently on another 
processor?

• The addresses will conflict 

• Even if CPUs take turns using memory bus

• Solutions?
• Can we relocate second program?



Can We Relocate Second Program?
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• Yes but how?
Like this? Or this?



Can We Relocate Second Program?
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• Yes but how?


• Do we split 50/50?


• If they don’t fit?


• If not contiguous?


• Do I need to recompile?

Like this? Or this?



Poll
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True or False: The problem of two processes sharing DRAM only exists on a 
multicore machine

PollEv.com /gguidi
Or send gguidi to 22333

https://pollev.com/gguidi


Poll
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True or False: The problem of two processes sharing DRAM only exists on a 
multicore machine

memory contention can occur even on a single-core machine due to time-sharing; multicore just 
increases simultaneous access



Multi-Core Processor
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Can We Relocate Second Program?
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• Yes but how?


• Do we split 50/50?


• If they don’t fit?


• If not contiguous?


• Do I need to recompile?

Like this? Or this?

• This is a problem even on a single core 
machine (runs multiple processes at a time)



Big Picture: Virtual Memory
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Give each process an illusion that it has exclusive 
access to entire main memory



But in Reality
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How Do We Create the Illusion?
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How Do We Create the Illusion?

33

A map of virtual 
address to physical 

addresses

The memory 
management unit 

(MMU) takes care of 
the mapping



How Do We Create the Illusion?
Process 1 wants to 

access data C

Process 1 thinks it’s 
stored at addr 1

So CPU generates addr 
1

The addr is intercepted 
by the MMU

MMU knows this is a 
virtual address

MMU looks at the 
mapping

The virtual addr 1 is 
physical addr 9

Data at addr 9 is sent to 
physical memory

Data is indeed C



How Do We Create the Illusion?
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How Do We Create the Illusion?
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A map of virtual 
address to physical 

addresses

The memory 
management unit 

(MMU) takes care of 
the mapping



Big Picture: (Virtual) Memory
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• From a process’s perspective –

• Process only sees the virtual memory

• If run out of memory, MMU maps data on disk in a transparent manner



Big Picture: (Virtual) Memory
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• From a process’s perspective –

• Process only sees the virtual memory

• Contiguous memory
• There’s no need to recompile — Only mappings need to be updated



Virtual Memory
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• Each process has its own virtual address space:

• Program/CPU can access any address from 0 … 2N

• A process is a program being executed

• Programmer can code as if they own all of memory

N = number of bits in the virtual address

If the CPU uses 32-bit virtual addresses, then:

N = 32

The virtual addresses go from:

0 to 232 - 1

~4 GB of addressable space per process



Virtual Memory
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• On-the-fly at runtime, for each memory access:

• So all accesses are indirect through a virtual address

• Then, map translate fake virtual address to a real physical address

• Redirect load/store to the physical address

• Each process has its own virtual address space:

• Program/CPU can access any address from 0 … 2N

• A process is a program being executed

• Programmer can code as if they own all of memory

N = number of bits in the virtual address



The Advantages of Virtual Memory
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• Easy relocation

• Loader puts code anywhere in physical memory

• The virtual mappings to give illusion of correct layout
• Can put code/data anywhere in physical memory


• The virtual addresses are the same; the MMU translates them

E.g.:

• Program A is mapped to virtual addresses 0-1 MB

• Program B is also mapped to virtual addresses 0-1 MB

A and B’s “pieces” of memory are physically at different DRAM places, but both see a contiguous 
0-1 MB address space



The Advantages of Virtual Memory
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• Higher memory utilization 

• Loader puts code anywhere in physical memory

• The virtual mappings to give illusion of correct layout

• The virtual memory to only load “pieces” of program that are used into RAM


• Physical memory can be overcommitted

E.g.:

• Program A allocates 1 GB of memory but only actually accesses 100 MB

• Only those 100 MB are loaded into DRAM; the rest stays on disk

This enables multiple programs to run concurrently, even if total memory exceeds DRAM



The Advantages of Virtual Memory

43

• Easy sharing

• Loader puts code anywhere in physical memory

• The virtual mappings to give illusion of correct layout

• Processes can share the same physical memory via virtual memory mapping


•

E.g.:

• Shared libraries (like libc.so) are mapped into many processes’ virtual address spaces

• Each process sees the library at its own virtual address, but there’s only one copy in DRAM



Outline
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• How do we run multiple processes together?


• How does virtual memory work?


• i.e., how do we create the “map” that maps a virtual address generated by the 

CPU to a physical address used by main memory?



Outline
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• How do we run multiple processes together?


• How does virtual memory work?


• i.e., how do we create the “map” that maps a virtual address generated by the 

CPU to a physical address used by main memory?


• Address Translation


• Overhead


• Paging



Picture Memory As …
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The virtual-to-physical address mapping
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• The CPU generates a virtual address when running a program


• The OS wants to give each process the illusion of a contiguous, linear memory 
space


• To do this, the CPU uses a page table, which is a “map” maintained by the OS that 

links virtual pages to physical frames



Picture Memory As …

48

K
er

ne
l s

pa
ce

U
se

r s
pa

ce

This is what I called “pieces” earlier!



Pages
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• Let’s suppose each page is 4KB


• Then anything in page 2 has (hex) address: 0x00002xxx

• The lower 12 bits specify which byte you are in the page
0x00002200 = 0010 0000 0000 = byte 512

• The upper bits = page number (PPN)
• The lower bits  = page offset



The virtual address breakdown
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A virtual address is divided into:


• Page number → identifies which virtual page is being accessed


• Offset within the page → identifies the exact byte inside that page

virtual address = [page number][offset]
32-bit = [20 bit][12-bit]



Sounds Familiar?
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• Let’s suppose each page is 4KB


• Then anything in page 2 has address: 0x00002xxx

• The lower 12 bits specify which byte you are in the page
0x00002200 = 0010 0000 0000 = byte 512

• The upper bits = page number (PPN)
• The lower bits  = page offset



Data Granularity
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• ISA: instruction specific: LB, LH, LW (ISA)


• Registers: 32 bits or 64 bits (ISA)

• Caches: Cache line/block (μarch)

• The address bits divided into:

• tag: sanity check for address match

• index: which entry in the cache

• offset: which byte in the line



Data Granularity
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• ISA: instruction specific: LB, LH, LW (ISA)


• Registers: 32 bits or 64 bits (ISA)

• Memory: Page

• The address bits divided into:

• page number: which page in memory

• offset: which byte in the page



Address Translator (MMU)
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• Processes use virtual memory


• DRAM uses physical memory

• Memory Management Unit (MMU) 

• It’s hardware!


• It translates virtual addresses to 
physical addresses on the fly


