Course website temporary issues + updated slides #8375

Giulia Guidi STAFF X * @ 3
4 minutes ago in General UNPIN STAR WATCHING VIEWS

Hi,

The course website is not updating and deploying correctly. The staff is looking into it but in the
meantime please find updated slides for lectures 19-21 in this post.

Best,

Prof. Guidi
" 19-guidi-syscalls.pdf
" 20-guidi-syscalls-vm.pdf

" 21-guidi-vm.pdf

¥ .v | — b o et

Gornell Bowers GIS
Computer Science

hH.\L.L
?? Ny
| GO PURT BN G
B Ao T BO R AR

CS3410: Computer Systems and Organization
LEC21: Virtual Memory

Professor Giulia Guidi
Monday, November 10, 2025

Credits: Bala, Bracy, Garcia, Guidi, Kao, Sampson, Sirer, Weatherspoon

2

Plan for Today

 Review of system call

e On to virtual memory!

Review of system call

Ex: Tork()

fork() is used to create a new process by duplicating the calling process
* The new process is called the child process

* The original process is called the parent process

fork() function prototype:
pid t fork(pid t pid);

fork() is called, then both processes continue executing the code after the

fork() call, but they have different PIDs

Ex: exec()

o exec|() replaces the current process image with a new process image

« Commonly used functions: execl (), execp(), execv(), etc.

e exec() function prototype:

int execl(const char xpath, const char xarg, ...);

e exec () basically changes what a process does

Ex: waltpid()

e waltpid() is used to wait for state changes in a child process

e |t can be used to walit for a specific child process to terminate

e waltpid() function prototype:

pid t waitpid(pid_t pid, int x , 1nt options);
Return value Return value of waitpid()
> 0 PID of the child whose state has changed
0 (only if WOHANG used) — no child has exited yet
-1 1

waltpid() vs wait()

e waltpid() is used to wait for state changes in a child process

e |t can be used to walit for a specific child process to terminate

e waltpid() function prototype:

pid t waitpid(pid_t pid, int x , 1int options);
Call It means...

walt(&status) It waits for any child to terminate

waitpid(-1, &status, 0) éSame as wait()

waltpid (, &status, 0) It waits for that specific child

! @0

How Processes Are Terminated?

 The system calls for termination are:
« ex1t(): used by a process to terminate itself
 abort(): used by a parent process to terminate a child process

 walt() and waitpid(): used by a parent process to wait for the
termination of a child process and retrieve its exit status

False Friend

 Despite its name, doesn’t necessarily kill a process; it can send any signal,
iIncluding ones that don’t terminate the target

. function prototype:
int (pid_t pid, int sig);
Outcome Return value of kil1()
Success 0
Error -1

10

Conceptual RISC-V Print “Hello”

Conventionally, a7 holds the system call number: it tells the OS which service the program is asking for

RISCTassembly pseudo—-code

i a7, 4 # Load system call code for 'print string’
La ad, msg # Load address of message

ecall # Call to the 0S

mSQg: | .ascC 11Z "Hello!" PC moves from user space to kernel space (more on this later)

1

This is a special instruction that triggers a trap to the operating system (OS)

 The OS looks at a/ (system call number = 4) and a0 (address of string)
e |t performs the requested service: writing “Hello!” to the terminal

. OE0)

Interrupt

An interrupt is a signal sent to the processor by hardware or software indicating
an event that needs immediate attention

12

Poll

What is the key difference between a hardware interrupt and a software interrupt?

PollEv.com /gguidi
Or send gguidi to 22333

13

https://pollev.com/gguidi

Types of Interrupt

 Hardware Interrupt: Generated by external hardware devices to get the CPU’s attention

 Keyboard input (key press)
 Mouse movement or click
* Disk I/O completion

 Network packet arrival

Type Description
Maskable Interrupt Can be temporarily “masked” (disabled) by the CPU; used for regular hardware events
Non-Maskable Interrupt Cannot be disabled; reserved for critical events like hardware failure or power issues

14

Types of Interrupt

* Software Interrupt: Generated by a program or the operating system, typically to
request a system service or perform an exception

 System calls (e.g., syscall instruction)

 EXxceptions like divide-by-zero or invalid memory access

e Breakpoints during debugging

Type Description
System Call Interrupt Triggered by a program to request OS services (e.g., file read/write)
: Generated automatically when an error or specific condition occurs (divide by zero,
Exception Interrupt g
page fault)
Software-Generated Signal Explicitly triggered in software (e.g., raise(), kill() in Unix)

15

Instruction Cycle and Interrupt

FETCH DECODE EXECUTE

INTERRUPT
eLE INTERRUPT?

16

How Interrupts Work

Interrupt Signal
* An interrupt signal is sent to the CPU by a hardware device or software
Saving State
 The CPU saves the current state of the running process (e.g., program counter,
registers) so it can resume execution later
Interrupt Handling
 The CPU transfers control to the interrupt handler associated with the interrupt. The
interrupt handler processes the event (e.g., reading data from a device)
Restoring State

 The CPU restores the saved state and resumes execution of the interrupted process

17 oS0

Ok, introduction to virtual memory

Process = running program
Syscall = how it asks the kernel to do privileged work on its behalf

18

Big Picture: Processes

Each process requires memory to hold:
* [ts instructions (the code to run)
e |[ts data (variables, heap)

 |[ts stack (function calls, local variables)

The problem:
* In reality, multiple processes run at the same time

e They all think they’re using the same memory addresses (like address 0x400000)

o ook

Multi-Core Processor

--

Process 1
Process 2
MULTICORE CHIP i
E CACHES CACHES CACHES CACHES E

MAIN MEMORY

20

Processor & Memory

* CPU address/data bus... OxFff._f

e ... routed through caches OX7ff...f
e ... 1to main memory

e |t’s simple, fast, but...

0x000...0

21

Processor & Memory

* So what happens when when another OXFEF . f

CPU
program Is executed concurrently on another

Ox7ff...f
Processor? SIS

 The addresses will conflict S‘S
 Even if CPUs take turns using memory bus

0x000...0

Memory

22

Processor & Memory

* So what happens when when another OXFEF . f

program Is executed concurrently on another OnTfff

processor?

e The addresses will conflict

 Even if CPUs take turns using memory bus

' .
e Solutions” 0X000...0

 Can we relocate second program? Memory

y @0

Can We Relocate Second Program?

Like this? Or this?

 Yes but how?

24

Can We Relocate Second Program?

Like this? Or this?

* Yes but how?
Do we split 50/507?
e |fthey don’t fit?
* |f not contiguous?

Do | need to recompile?

25

Poll

True or False: The problem of two processes sharing DRAM only exists on a
multicore machine

PollEv.com /gguidi
Or send gguidi to 22333

20

https://pollev.com/gguidi

Poll

True or False: The problem of two processes sharing DRAM only exists on a
multicore nhachine

memory contention can occur even on a single-core machine due to time-sharing; multicore just
Increases simultaneous access

27

Multi-Core Processor

Process 1

Process 2
MULTICORE CHIP t

CACHES CACHES CACHES CACHES

--

MAIN MEMORY

28

Can We Relocate Second Program?

Like this? Or this?

* Yes but how?

Do we split 50/507
e |f they don’t fit?
 |f not contiguous??

Do | need to recompile?

 Thisis a problem even on a single core

machine (runs multiple processes at a time)

" ©0ge)

Big Picture: Virtual Memory

Process 1 pm

Give each process an illusion that it has exclusive
access to entire main memory

3 E
Process 2 *2 “
1| 6
o_H

30

But in Reality

=
I

=

Process 1

Process 2

31

How Do We Create the lllusion?

Process 1 &) SRS

Process 2 —p 3

32

How Do We Create the lllusion?

Process 1 &l

A map of virtual
address to physical
addresses

/

The memory
management unit

(MMU) takes care of
the mapping

How Do We Create the lllusion?

Process 1

-

Process 1 wants to
access data C

Process 1 thinks it'’s
stored at addr 1

So CPU generates addr
1

e —
The addr is intercepted
by the MMU

A

MMU knows this is a
virtual address

\ __ "

MMU looks at the
mapping

The virtual addr 1 is
physical addr 9

Data at addr 9 is sent to
physical memory

Data is indeed C

How Do We Create the lllusion?

Process 1

-

How Do We Create the lllusion?

Process 1 &l

A map of virtual
» address to physical
addresses

The memory
management unit

(MMU) takes care of
the mapping

-

\

36

Big Picture: (Virtual) Memory

 From a process’s perspective —

3
process 1 gl e

Virtual Memory

Hidden!from Process

Physical Memory

* Process only sees the virtual memory

 |f run out of memory, MMU maps data on disk in a transparent manner

; @0

Big Picture: (Virtual) Memory

 From a process’s perspective —

3
Process 1 —>2 — s

on from Process

Physical Memory

Hidd

Virtual Memory

* Process only sees the virtual memory Disk

» Contiguous memory
 There’s no need to recompile — Only mappings need to be updated

. @0

Virtual Memory

 Each process has its own virtual address space:

 Program/CPU can access any address from O ... 2N
A process Is a program being executed

 Programmer can code as if they own all of memory

39

Virtual Memory

 Each process has its own virtual address space:

 Program/CPU can access any address from O ... 2N
A process Is a program being executed

 Programmer can code as if they own all of memory

* On-the-fly at runtime, for each memory access:

 So all accesses are indirect through a virtual address

 Then, map translate fake virtual address to a real physical address

* Redirect load/store to the physical address

40

The Advantages of Virtual Memory

« Easy relocation

e (Can put code/data anywhere in physical memory

e The virtual addresses are the same:; the MMU translates them

41

The Advantages of Virtual Memory

 Higher memory utilization

* The virtual memory to only load “pieces” of program that are used into RAM

* Physical memory can be overcommitted

42

The Advantages of Virtual Memory

 Easy sharing

* Processes can share the same physical memory via virtual memory mapping

43

Outline

 How do we run multiple processes together?

 How does virtual memory work?

* |.e., how do we create the “map” that maps a virtual address generated by the

CPU to a physical address used by main memory?

44

Outline

 How do we run multiple processes together?

 How does virtual memory work?

* |.e., how do we create the “map” that maps a virtual address generated by the

CPU to a physical address used by main memory?
 Address Translation
e Overhead

* Paging

45

Picture Memory As ...

Byte Array: Segments:
addr [CEERN oxfffffffc
oxffffffff| xaa
0x80000000
. Ox7ffffffc
x00
0x10000000
x00
xef
xcd text
xab 0x00400000
xff
0x00000000 | x00 0x00000000

46

The virtual-to-physical address mapping

 The CPU generates a virtual address when running a program

 The OS wants to give each process the illusion of a contiguous, linear memory

space

 To do this, the CPU uses a page table, which is a “map” maintained by the OS that

links virtual pages to physical frames

47

PiCture Memory AS "t This is what | called “pieces” earlier!

Byte Array: Segments: New!/ Page Array:

addr QECEENN oxfffffffc
oxffFFffff | xaa oxt+11000
@X80000000
- S ARRRRRL: OxtTTTe00o
x00 oxffffdoeo
of pages
0X00004000
0Xx10000000
x00 0X00003000
xef
—cd text 0X00002000
xab 0X00400000
= 0X00001000
0x00000000 | X00 @X00000000 0X00000000

o @0

@ Page Array:

0x00002000

0x00001000

0x00000000

Pages

Let’s suppose each page is 4KB

Then anything in has (hex) address: 0x00002xxx

The lower 12 bits specify which byte you are in the page
0x00002200 = 0010 0000 0000 = byte 512

The upper bits = page number (PPN)
The lower bits = page offset

49 ‘@@@@\

The virtual address breakdown

A virtual address Is divided into:

 Page number — identifies which virtual page is being accessed

 Offset within the page — identifies the exact byte inside that page

32-bit
virtual address

[20 bit] [12-bit]
[page number] [offset]

50

@ Page Array:

0x00002000

0x00001000

0x00000000

Sounds Familiar?

Let’s suppose each page is 4KB

Then anything in page 2 has address: 0x00002xxx

The lower 12 bits specify which byte you are in the page
0x00002200 = 0010 0000 0000 = byte 512

The upper bits = page number (PPN)
The lower bits = page offset

5 oS0

Data Granularity

e |SA: instruction specific: LB, LH, LW (ISA)
* Registers: 32 bits or 64 bits (ISA)

 Caches: Cache line/block (parch)
 The address bits divided into:

e tag: sanity check for address match

e Index: which entry in the cache

» offset: which byte in the line 1 e~

52

Data Granularity

ISA: instruction specific: LB, LH, LW (ISA)
Registers: 32 bits or 64 bits (ISA)

Memory: Page
 The address bits divided into:

e page number: which page in memory

o oOffset: which byte in the page

53

Address Translator (MMU)

* Processes use virtual memory

» DRAM uses physical memory

e Memory Management Unit (MMU)

e |t’s hardware!

Physical * |t translates virtual addresses to

0 \\\\\Q“\\\\\ Agd; ;3:5 physical addresses on the fly
Process #2 p
Memory

(DRAM)

54

