
1

CS3410: Computer Systems and Organization
LEC21: Virtual Memory

Professor Giulia Guidi

Monday, November 10, 2025

2

Credits: Bala, Bracy, Garcia, Guidi, Kao, Sampson, Sirer, Weatherspoon

Plan for Today

• Review of system call

3

• On to virtual memory!

Review of system call

4

Ex: fork()

5

• fork() function prototype:

pid_t fork(pid_t pid);

• fork() is used to create a new process by duplicating the calling process

• The new process is called the child process

• The original process is called the parent process

• fork() is called, then both processes continue executing the code after the

fork() call, but they have different PIDs

Ex: exec()

6

• exec() replaces the current process image with a new process image

• Commonly used functions: execl(), execp(), execv(), etc.

• exec() function prototype:

int execl(const char *path, const char *arg, ...);

• exec() basically changes what a process does

Ex: waitpid()

7

• waitpid() is used to wait for state changes in a child process
• It can be used to wait for a specific child process to terminate

• waitpid() function prototype:

pid_t waitpid(pid_t pid, int *status, int options);

Return value Return value of waitpid()

> 0 PID of the child whose state has changed

0 (only if WNOHANG used) — no child has exited yet

-1 -1

waitpid() vs wait()

8

• waitpid() is used to wait for state changes in a child process
• It can be used to wait for a specific child process to terminate

• waitpid() function prototype:

pid_t waitpid(pid_t pid, int *status, int options);

Call It means…

wait(&status) It waits for any child to terminate

waitpid(-1, &status, 0) Same as wait()

waitpid(pid, &status, 0) It waits for that specific pid child

How Processes Are Terminated?

9

• The system calls for termination are:

• exit(): used by a process to terminate itself
• abort(): used by a parent process to terminate a child process
• wait() and waitpid(): used by a parent process to wait for the

termination of a child process and retrieve its exit status

False Friend kill()

10

• Despite its name, kill() doesn’t necessarily kill a process; it can send any signal,
including ones that don’t terminate the target

• kill() function prototype:

int kill(pid_t pid, int sig);

Outcome Return value of kill()

Success 0

Error -1

Conceptual RISC-V Print “Hello”

11

RISC assembly pseudo-code
li a7, 4 # Load system call code for 'print string'
la a0, msg # Load address of message
ecall # Call to the OS
...
msg: .asciiz "Hello!"

Conventionally, a7 holds the system call number: it tells the OS which service the program is asking for

This is a special instruction that triggers a trap to the operating system (OS)

• The OS looks at a7 (system call number = 4) and a0 (address of string)

• It performs the requested service: writing “Hello!” to the terminal

PC moves from user space to kernel space (more on this later)

Interrupt

12

An interrupt is a signal sent to the processor by hardware or software indicating
an event that needs immediate attention

Poll

13

PollEv.com /gguidi
Or send gguidi to 22333

What is the key difference between a hardware interrupt and a software interrupt?

https://pollev.com/gguidi

Types of Interrupt

14

• Hardware Interrupt: Generated by external hardware devices to get the CPU’s attention

• Keyboard input (key press)

• Mouse movement or click

• Disk I/O completion

• Network packet arrival

Type Description

Maskable Interrupt Can be temporarily “masked” (disabled) by the CPU; used for regular hardware events

Non-Maskable Interrupt Cannot be disabled; reserved for critical events like hardware failure or power issues

Types of Interrupt

15

• System calls (e.g., syscall instruction)

• Exceptions like divide-by-zero or invalid memory access

• Breakpoints during debugging

• Software Interrupt: Generated by a program or the operating system, typically to
request a system service or perform an exception

Type Description

System Call Interrupt Triggered by a program to request OS services (e.g., file read/write)

Exception Interrupt Generated automatically when an error or specific condition occurs (divide by zero,
page fault)

Software-Generated Signal Explicitly triggered in software (e.g., raise(), kill() in Unix)

Instruction Cycle and Interrupt

16

FETCH DECODE EXECUTE

HALT or NEXT
INSTRUCTIONINTERRUPT?INTERRUPT

CYCLE

Y N

How Interrupts Work

17

• Interrupt Signal

• An interrupt signal is sent to the CPU by a hardware device or software

• Saving State

• The CPU saves the current state of the running process (e.g., program counter,

registers) so it can resume execution later

• Interrupt Handling

• The CPU transfers control to the interrupt handler associated with the interrupt. The

interrupt handler processes the event (e.g., reading data from a device)

• Restoring State

• The CPU restores the saved state and resumes execution of the interrupted process

Ok, introduction to virtual memory

18

Process = running program

Syscall = how it asks the kernel to do privileged work on its behalf

Big Picture: Processes

19

Each process requires memory to hold:

• Its instructions (the code to run)

• Its data (variables, heap)

• Its stack (function calls, local variables)

The problem:

• In reality, multiple processes run at the same time

• They all think they’re using the same memory addresses (like address 0x400000)

Multi-Core Processor

20

MAIN MEMORY

CORE

CACHES CACHES CACHES CACHES

CORE CORE CORE

MULTICORE CHIP

Process 1
Process 2

Processor & Memory

21

• CPU address/data bus...

• … routed through caches

• … to main memory

• It’s simple, fast, but…

Processor & Memory

22

• So what happens when when another
program is executed concurrently on another
processor?

• The addresses will conflict

• Even if CPUs take turns using memory bus

Processor & Memory

23

• So what happens when when another
program is executed concurrently on another
processor?

• The addresses will conflict

• Even if CPUs take turns using memory bus

• Solutions?
• Can we relocate second program?

Can We Relocate Second Program?

24

• Yes but how?
Like this? Or this?

Can We Relocate Second Program?

25

• Yes but how?

• Do we split 50/50?

• If they don’t fit?

• If not contiguous?

• Do I need to recompile?

Like this? Or this?

Poll

26

True or False: The problem of two processes sharing DRAM only exists on a
multicore machine

PollEv.com /gguidi
Or send gguidi to 22333

https://pollev.com/gguidi

Poll

27

True or False: The problem of two processes sharing DRAM only exists on a
multicore machine

memory contention can occur even on a single-core machine due to time-sharing; multicore just
increases simultaneous access

Multi-Core Processor

28

MAIN MEMORY

CORE

CACHES CACHES CACHES CACHES

CORE CORE CORE

MULTICORE CHIP

Process 1
Process 2

Can We Relocate Second Program?

29

• Yes but how?

• Do we split 50/50?

• If they don’t fit?

• If not contiguous?

• Do I need to recompile?

Like this? Or this?

• This is a problem even on a single core
machine (runs multiple processes at a time)

Big Picture: Virtual Memory

30

Give each process an illusion that it has exclusive
access to entire main memory

But in Reality

31

How Do We Create the Illusion?

32

How Do We Create the Illusion?

33

A map of virtual
address to physical

addresses

The memory
management unit

(MMU) takes care of
the mapping

How Do We Create the Illusion?
Process 1 wants to

access data C

Process 1 thinks it’s
stored at addr 1

So CPU generates addr
1

The addr is intercepted
by the MMU

MMU knows this is a
virtual address

MMU looks at the
mapping

The virtual addr 1 is
physical addr 9

Data at addr 9 is sent to
physical memory

Data is indeed C

How Do We Create the Illusion?

35

How Do We Create the Illusion?

36

A map of virtual
address to physical

addresses

The memory
management unit

(MMU) takes care of
the mapping

Big Picture: (Virtual) Memory

37

• From a process’s perspective –

• Process only sees the virtual memory

• If run out of memory, MMU maps data on disk in a transparent manner

Big Picture: (Virtual) Memory

38

• From a process’s perspective –

• Process only sees the virtual memory

• Contiguous memory
• There’s no need to recompile — Only mappings need to be updated

Virtual Memory

39

• Each process has its own virtual address space:

• Program/CPU can access any address from 0 … 2N

• A process is a program being executed

• Programmer can code as if they own all of memory

N = number of bits in the virtual address

If the CPU uses 32-bit virtual addresses, then:

N = 32

The virtual addresses go from:

0 to 232 - 1

~4 GB of addressable space per process

Virtual Memory

40

• On-the-fly at runtime, for each memory access:

• So all accesses are indirect through a virtual address

• Then, map translate fake virtual address to a real physical address

• Redirect load/store to the physical address

• Each process has its own virtual address space:

• Program/CPU can access any address from 0 … 2N

• A process is a program being executed

• Programmer can code as if they own all of memory

N = number of bits in the virtual address

The Advantages of Virtual Memory

41

• Easy relocation

• Loader puts code anywhere in physical memory

• The virtual mappings to give illusion of correct layout
• Can put code/data anywhere in physical memory

• The virtual addresses are the same; the MMU translates them

E.g.:

• Program A is mapped to virtual addresses 0-1 MB

• Program B is also mapped to virtual addresses 0-1 MB

A and B’s “pieces” of memory are physically at different DRAM places, but both see a contiguous
0-1 MB address space

The Advantages of Virtual Memory

42

• Higher memory utilization

• Loader puts code anywhere in physical memory

• The virtual mappings to give illusion of correct layout

• The virtual memory to only load “pieces” of program that are used into RAM

• Physical memory can be overcommitted

E.g.:

• Program A allocates 1 GB of memory but only actually accesses 100 MB

• Only those 100 MB are loaded into DRAM; the rest stays on disk

This enables multiple programs to run concurrently, even if total memory exceeds DRAM

The Advantages of Virtual Memory

43

• Easy sharing

• Loader puts code anywhere in physical memory

• The virtual mappings to give illusion of correct layout

• Processes can share the same physical memory via virtual memory mapping

•

E.g.:

• Shared libraries (like libc.so) are mapped into many processes’ virtual address spaces

• Each process sees the library at its own virtual address, but there’s only one copy in DRAM

Outline

44

• How do we run multiple processes together?

• How does virtual memory work?

• i.e., how do we create the “map” that maps a virtual address generated by the

CPU to a physical address used by main memory?

Outline

45

• How do we run multiple processes together?

• How does virtual memory work?

• i.e., how do we create the “map” that maps a virtual address generated by the

CPU to a physical address used by main memory?

• Address Translation

• Overhead

• Paging

Picture Memory As …

46

K
er

ne
l s

pa
ce

U
se

r s
pa

ce

The virtual-to-physical address mapping

47

• The CPU generates a virtual address when running a program

• The OS wants to give each process the illusion of a contiguous, linear memory
space

• To do this, the CPU uses a page table, which is a “map” maintained by the OS that

links virtual pages to physical frames

Picture Memory As …

48

K
er

ne
l s

pa
ce

U
se

r s
pa

ce

This is what I called “pieces” earlier!

Pages

49

• Let’s suppose each page is 4KB

• Then anything in page 2 has (hex) address: 0x00002xxx

• The lower 12 bits specify which byte you are in the page
0x00002200 = 0010 0000 0000 = byte 512

• The upper bits = page number (PPN)
• The lower bits = page offset

The virtual address breakdown

50

A virtual address is divided into:

• Page number → identifies which virtual page is being accessed

• Offset within the page → identifies the exact byte inside that page

virtual address = [page number][offset]
32-bit = [20 bit][12-bit]

Sounds Familiar?

51

• Let’s suppose each page is 4KB

• Then anything in page 2 has address: 0x00002xxx

• The lower 12 bits specify which byte you are in the page
0x00002200 = 0010 0000 0000 = byte 512

• The upper bits = page number (PPN)
• The lower bits = page offset

Data Granularity

52

• ISA: instruction specific: LB, LH, LW (ISA)

• Registers: 32 bits or 64 bits (ISA)

• Caches: Cache line/block (μarch)

• The address bits divided into:

• tag: sanity check for address match

• index: which entry in the cache

• offset: which byte in the line

Data Granularity

53

• ISA: instruction specific: LB, LH, LW (ISA)

• Registers: 32 bits or 64 bits (ISA)

• Memory: Page

• The address bits divided into:

• page number: which page in memory

• offset: which byte in the page

Address Translator (MMU)

54

• Processes use virtual memory

• DRAM uses physical memory

• Memory Management Unit (MMU)

• It’s hardware!

• It translates virtual addresses to
physical addresses on the fly

