Gornell Bowers C1S
Computer Science

 —

CS3410: Computer Systems and Organization
LEC20: System Calls (Vol. Il

Professor Giulia Guidi
Wednesday, November 5, 2025

Credits: Bala, Bracy, Garcia, Guidi, Kao, Sampson, Sirer, Weatherspoon

1

Plan for Today

 Review of processes and syscall

* A bit more on syscall

* Brief introduction to virtual memory

Review of OS and processes

If we can run instructions directly on the CPU, why do we
need an operating system?

recipe Process versus Program

1

* A program consists of code and data
e |t is specified in some programming language, €.g., C
* |t is typically stored in a file on disk

 “Running a program” means creating a process
 Can run a program multiple times!

* One after the other, or even concurrently

A Day In the Life of a Process

The source file: sum.¢ ==========9% The executable: sum ===========-- » Process is alive: process id p1d XXX

A Stack
#include <stdio.h> 0040 0000 ©C40023C -
- 21035000 |°P T *
int max = 10; ?f) (O 1b800B50c
’ i = 8C048004 f
int main () { 21047002
int sum = 0; 0400020 Heap
add(max, &sum); P
. 10201000
printf(“%d”, sum); 1020 0000/'721940330
T Max 22500102 Jate
© e
ext

program

Process Life Cycle

INIT OS allocates: PCB (to track its state, registers, etc.)
and an address space (code, data, stack)

The process is ready to run, but not currently on the
READY CPU; it’s waiting in the ready queue for the
scheduler to pick it

The process is now
executing on the CPU

RUNNING WAITING

The process cannot proceed until
some event occurs, e.g., waiting
for I/O, waiting for another
process (e.g., waitpid)

Critical: when the event completes, the
OS moves it back to READY

Process Life Cycle

INIT OS allocates: PCB (to track its state, registers, etc.)
and an address space (code, data, stack)

The process is ready to run, but not currently on the
READY CPU; it’s waiting in the ready queue for the
scheduler to pick it

The time slice expired (preemption)

The process is now
executing on the CPU

RUNNING WAITING

The process cannot proceed until
some event occurs, e.g., waiting
for I/O, waiting for another
process (e.g., waitpid)

Critical: when the event completes, the
OS moves it back to READY

Process Life Cycle

INIT OS allocates: PCB (to track its state, registers, etc.)
and an address space (code, data, stack)

The process is ready to run, but not currently on the
READY CPU; it’s waiting in the ready queue for the
scheduler to pick it

The time slice expired (preemption)

The process is now
executing on the CPU

RUNNING WAITING

The process cannot proceed until
some event occurs, e.g., waiting
The process has finished for I/0, waiting for another

executing, e.g., reached TERMINATED process (e.g., waltpid)

exit(), frees PCB Critical: when the event completes, the

OS moves it back to READY

Context Switching

The process by which an OS saves the state of a currently running process and
restores the state of another process

CPU

Process P1 Process P2
Interrupt or system call

» First, save the current process state Erecuting |

* Update the Process Control Block (PCB) :

* Then, select the next process Interrupt or system call " | prcuuna
* Restore the next process state =

* Resume execution e

Executing l‘

10

Poll

In an operating system, which statement correctly describes the difference
between user space and kernel space?

PollEv.com /gguidi
Or send gguidi to 22333

11

https://pollev.com/gguidi

this is where the core of the operating systems (the kernel) runs

|

User space versus Kernel space

12

User Space versus Kernel Space

 User space is where programs (apps, compilers, browsers, your code, etc.) run
* User space applications cannot directly access the system’s hardware resources

* |t is restricted and isolated from the kernel space to ensure system stability and
security

 Kernel space is where the core of the operating system (the kernel) runs
* |t has full access to hardware (e.g., CPU, memory, disks, devices)

 Responsible for: scheduling processes, managing memory, handling |/O,
enforcing security and isolation

13

How They Interact

User programs cannot just “walk” into kernel space: yhey have to ask for help through
a system call

RISC assembly pseudo-code

i1 a7/, 4 # Load system call code for 'print string’: 1n user space
la a0, msg # Load the address of the message: 1n user space
ecall # Trap to the 0S: switch from user space to kernel space

The 0S examines v@ (to know which service you’re
requesting) and a® (the argument)

msg: .asciiz “Hello!"™ # Data stored in user space

14

Memory Layout 32-Bit Kernel

XFFFFFFFF

1 GB — —P these addresses are unavailable in user mode

cooo0000 this |S @ software convention

Stack
Automatic variables (local to a function's scope), caller’s return address, etc.
(grows towards lower memory addresses)

1t Heap 1
3 GB — Dynamic memory allocation through malloc/new free/delete
(grows towards higher memory addresses)

In a 32-bit system, the total addressable memory is 4 GB:

* The division of memory into 1 GB for kernel space and 3

GEB for user space is a common configuration

Text . :
Binary image of the process (e.g. /bin/1s) 0 08048000 |t allows the OS to manage memory efficiently while

0x00000000 providing ample space for user applications

15

128TiB

128TiB

Memory Layout 64-Bit Kernel

OxFFFFFFFFFFFFFFFF
Kernel
64 TiB Addresses
Physical
OxFFFF800000000000
“Canonical Hole" Empty
Space
Ox00007FFFFFFFFFFF
0x0000000000000000

64-Bit Virtual Address Space

In a 64-bit system, the total memory is 16 exabytes:

e Current CPUs don’t use all 64 bits of address lines

The available address space is split into 2 halves separated

by a very big hole called

The purpose of the
* It helps In detecting invalid memory accesses

* [t enhances security and stabillity

16

Common system calls

17

Poll

Given a successful call to fork(), how many processes exist after the call,
and what does the parent process receive as a return value?

PollEv.com /gguidi
Or send gguidi to 22333

18

https://pollev.com/gguidi

Ex: fork()

fork() is used to create a new process by duplicating the calling process
* The new process is called the child process

* The original process is called the parent process

fork() function prototype:
pid t fork(pid t pid);

fork() is called, then both processes continue executing the code after the

fork() call, but they have different PIDs

19

fork () Return Value

 fork() function prototype:
pid t fork(pid t pid);

Process Return value of fork()

parent IDofthechid
o o
Eor o

e |f fork() fails, it returns —1 in the parent and no child is created

20

Ex: exec()

o exec|() replaces the current process image with a new process image

« Commonly used functions: execl (), execp(), execv(), etc.

e exec() function prototype:

int execl(const char xpath, const char xarg, ...);

e exec () basically changes what a process does

21

Ex: exec()

#include <stdio.h>
#include <unistd.h>

int main() {
printf("Before exec\n");
execl("/bin/1ls", "1s", NULL);

perror("execl"); // this will only be executed if exec fails
return 0,

The perror("execl") function call is used to print an error message to the standard error stream (stderr)

If execL() fails, perror(“execl”)will print an error message, e.g.: execl: No such file or directory

2 OE0)

Ex: waltpid()

e waltpid() is used to wait for state changes in a child process

e |t can be used to walit for a specific child process to terminate

e waltpid() function prototype:

pid t waitpid(pid_t pid, int x , 1nt options);
Return value Return value of waitpid()
> 0 PID of the child whose state has changed
0 (only if WOHANG used) — no child has exited yet
-1 1

23

Ex: waltpid()
e waltpid() is used to wait for state changes in a child process

e |t can be used to walit for a specific child process to terminate

e waltpid() function prototype:

pid_t waitpid(pid_t pid, int *status, int options);

« pid specifies the child process to wait for. It can take several values:

« pi1d > 0: it waits for the child whose process ID is equal to p1id

24

Ex: waltpid()

e waltpid() is used to wait for state changes in a child process

e |t can be used to walit for a specific child process to terminate

e waltpid() function prototype:
pid t waitpid(pid_t pid, int xstatus, int options);
« pid specifies the child process to wait for. It can take several values:

« pi1d > 0: it waits for the child whose process ID is equal to p1id

« pid == 0: it waits for any child process whose Is equal to that of the calling process

) @0

Ex: waltpid()

e waltpid() is used to wait for state changes in a child process

e |t can be used to walit for a specific child process to terminate

e waltpid() function prototype:

pid_t waitpid(pid_t pid, int *status, int options);

« pid specifies the child process to wait for. It can take several values:
« pi1d > 0: it waits for the child whose process ID is equal to p1d
 pid == 0: it waits for any child process whose Is equal to that of the calling process

« p1d == -1:it waits for any child process; this is equivalent to wait ()

. @0

Ex: waltpid()
e waltpid() is used to wait for state changes in a child process

e |t can be used to walit for a specific child process to terminate

e waltpid() function prototype:

pid_t waitpid(pid_t pid, int *status, int options);

« pid specifies the child process to wait for. It can take several values:

« pi1d > 0: it waits for the child whose process ID is equal to p1d

 pid == 0: it waits for any child process whose Is equal to that of the calling process
« p1d == -1:it waits for any child process; this is equivalent to wait ()
e p1d < -1:it waits for any child process whose is equal to the absolute value of p1id

. @0

Ex: waltpid()

« waltpid() is used to wait for state changes in a child process

e |t can be used to walit for a specific child process to terminate

e waltpid() function prototype:
pid_t waitpid(pid_t pid, int * , 1int options);

. . A pointer to an integer where the exit status of the child process will be stored.

« options: Provides additional options to modify the behavior of waitpid()

!

It lets the parent choose which child to wait for and how to wait.

28

waltpid() vs wait()

e waltpid() is used to wait for state changes in a child process

e |t can be used to walit for a specific child process to terminate

e waltpid() function prototype:

pid t waitpid(pid_t pid, int x , 1int options);
Call It means...

walt(&status) It waits for any child to terminate

waitpid(-1, &status, 0) éSame as wait()

waltpid (, &status, 0) It waits for that specific child

. @0

o o
Ex: waltpid()

#include <sys/types.h>

#include <sys/wait.h>

#include <unistd.h>
#include <stdio.h>

int main() {
pid_t pid = fork(); // create new process
if (pid == 0) { // 1f true, it means you’'re the child process
printf("Child process\n”); // child prints a message to standard output
_exit(0); // terminates the child process immediately with exit status 0
} else { // 1t means you’re the parent process
int status;
pid t wpid = waitpid(pid, &status, 0); // parent waits for the specific child whose PID is pid to finish
if (wpid == -1) { // if something went wrong, prints a system error message
perror("waitpid");
y else {
1f (WIFEXITED(status))
printf("Child exited with status %d\n", WEXITSTATUS(status));

}

return 0;

30

Ex: waitpid() + execlp()

#include <stdio.h>
#include <unistd.h>
#include <sys/wait.h>

int main() {
pid_t pid = fork(); // creates new process

if (pid == 0) {

// child runs "ls -—-1"
execlp("1ls", "1s", "-1", NULL); // replaces the current process image with a new program
perror("execlp failed");

} else if (pid > 0) {
int status;
pid_t w = waitpid(pid, &status, @); // parent waits for child
if (w == -1) {
perror("waitpid failed");
} else if (WIFEXITED(status)) {
printf("Child exited with status %d\n", WEXITSTATUS(status));

31

How Processes Are Created?

e fork():
* |t allocates the process ID pid
* Create and initialize PCB
 Create and initialize a new address space

 Then, inform the scheduler a new process is ready to run

32

How Processes Are Created?
e Tork():

* |t allocates the process ID pid
 Create and initialize PCB
 Create and initialize a new address space

 Then, inform the scheduler a new process is ready to run

« exec(program, arguments):

| oad the program into the address space

 Copy arguments into memory address space

e Then, Initialize hardware context to stat execution at “start”

33

How Processes Are Terminated?

 The system calls for termination are:
« ex1t(): used by a process to terminate itself
 abort(): used by a parent process to terminate a child process

 walt() and waitpid(): used by a parent process to wait for the
termination of a child process and retrieve its exit status

34

False Friend

 Despite its name, doesn’t necessarily kill a process; it can send any signal,
iIncluding ones that don’t terminate the target

. function prototype:
int (pid_t pid, int sig);
Outcome Return value of kil1()
Success 0
Error -1

35

fork() + exec()

Process 1
Program A

PC=rchild pid = fork();
if (child pid==0)
exec(B);
else
wait(&status);

child pid| ?

36

fork() + exec()

Process 1
Program A

child_pid = fork();
PC=if (child pid==0)
exec(B);
else
wait(&status);

child pid| 42

Process 42
Program A

child_pid = fork();

PC=9rif (child pid==0)
exec(B);

else

wait(&status);
child pid| o

37

fork() + exec()

Process 1
Program A

child pid = fork();
PC=9rif (child pid==0)

exec(B); Fork returns twice!
else

wait(&status);

child pid |42

Process 42
Program A

child pid = fork();
PC=ptif (child pid==0)
exec(B);
else
wait(&status);

child pid| o

38

Process 1
Program A

child pid = fork();

if (child pid==0)
exec(B);

else

PC=2 wait(&status);

child pid[42

Process 42
Program A

child pid = fork();
PC=ptif (child pid==0)
exec(B);
else
wait(&status);

child pid|[e

fork() + exec()

g @ Waits until the child process exits

39

fork() + exec()

Process 1
Program A

child pid = fork();

if (child pid==0)
exec(B);

else

PC=9 wait(&status); ’@
child_pid |42

If and else both excuted!

Process 42
Program A

child pid = fork();
if (child pid==0)
PC=p exec(B);

else

wait(&status);
child pid| o

40

fork() + exec()

Process 1
Program A

child pid = fork();

if (child_pid==0)
exec(B);

else

PC=4 wait(&status); >®

child pid |42

Process 42
Program B

PC==main() {

exit(3);

}

41

fork() + exec()

Process 1
Program A

child_pid = fork();

if (child pid==0)
exec(B);

else

PC=% wait(&status);

child pid |42

status 3

42

Brief Summary

A process iIs an abstraction of a computer

A process Is not a program

A context captures the state of the processor

The implementation uses two spaces: user space and kernel space

A Process Control Block (PCB) is a kernel data structure that saves context

and has other information about the process

43

System Signals

A signal is away for processes to communicate with each other

Common signals:

o SIGINT: the interrupt signal

 SIGTERM: the termination signal is used to request a process to terminate

» SIGKILL: the kill signal forces a process to terminate immediately; cannot be caught or
ighored

 SIGSEGV: the segmentation fault (e.g., process tries to access an invalid memory location)

 SIGCHLD: it’'s sent to a parent process when a child process terminates

 SIGALRM: it'’s alarm clock signal (e.g., timer)

44

Sending Signals

You can send signals using the ki1l () function or the function:

kill(pid_t pid, int sig)

kill() sends the signal sig to the process with the process ID pid

(int sig)

sends the signal sig to the calling process itself

45

Interrupt

An interrupt is a signal sent to the processor by hardware or software indicating
an event that needs immediate attention

46

Types of Interrupt

 Hardware Interrupt: Generated by external hardware devices to get the CPU’s attention

 Keyboard input (key press)
 Mouse movement or click
* Disk I/O completion

 Network packet arrival

Type Description
Maskable Interrupt Can be temporarily “masked” (disabled) by the CPU; used for regular hardware events
Non-Maskable Interrupt Cannot be disabled; reserved for critical events like hardware failure or power issues

47

Types of Interrupt

* Software Interrupt: Generated by a program or the operating system, typically to
request a system service or perform an exception

 System calls (e.g., syscall instruction)

 EXxceptions like divide-by-zero or invalid memory access

e Breakpoints during debugging

Type Description
System Call Interrupt Triggered by a program to request OS services (e.g., file read/write)
: Generated automatically when an error or specific condition occurs (divide by zero,
Exception Interrupt g
page fault)
Software-Generated Signal Explicitly triggered in software (e.g., raise(), kill() in Unix)

48

Instruction Cycle and Interrupt

FETCH DECODE EXECUTE

INTERRUPT
eLE INTERRUPT?

49

How Interrupts Work

* Interrupt Signal

* An interrupt signal is sent to the CPU by a hardware device or software

50

How Interrupts Work

* Saving State
 The CPU saves the current state of the running process (e.g., program counter,

registers) so it can resume execution later

51

How Interrupts Work

* Interrupt Signal
* An interrupt signal is sent to the CPU by a hardware device or software
* Saving State
 The CPU saves the current state of the running process (e.g., program counter,
registers) so it can resume execution later
* Interrupt Handling
 The CPU transfers control to the interrupt handler associated with the interrupt. The

interrupt handler processes the event (e.g., reading data from a device)

52

How Interrupts Work

Interrupt Signal
* An interrupt signal is sent to the CPU by a hardware device or software
Saving State
 The CPU saves the current state of the running process (e.g., program counter,
registers) so it can resume execution later
Interrupt Handling
 The CPU transfers control to the interrupt handler associated with the interrupt. The
interrupt handler processes the event (e.g., reading data from a device)
Restoring State

 The CPU restores the saved state and resumes execution of the interrupted process

53

Why Interrupt?

» Efficiency,

o ResponsiveneSS, —» React immediately to I/O and user input

o And, mu|titasking —p Timer interrupts let OS switch between processes

54

How does a system call actually work?

Y
INTERRUPT
eLE INTERRUPT?

55

How System Calls Work

They act as the bridge between user-level applications and the kernel:

 System Call Request
* The application requests a system call by invoking a corresponding function provided by the
operating system’s AP
» Switch to Kernel Mode
 The CPU switches from user mode to kernel mode
 Execution in Kernel
* The kernel receives the system call request and performs the necessary operations
 Return to User Mode

* The kernel switches the CPU back to user mode and returns control to the calling process

56 oS0

Executing a System Call

* Process

1. Calls systems call function in library

2. Places arguments in registers and/or pushes them onto user stack
3. Places syscall type in a dedicated register

4. Then, executes syscall or ecall (RISC-V) machine instruction

e Kernel

1. Executes syscall or ecall (RISC-V) interrupt handler
2. Places result in a dedicated register
3. Executes return_from_interrupt interrupt handler

* Process
1. Executes return from function

o57

Conceptual RISC-V Print “Hello”

Conventionally, a7 holds the system call number in RISC-V: it tells the OS which service the program is asking for

RISCTassembly pseudo—code

i a7, 4 # Load system call code for 'print string’
la a0, msg # Load address of message

ecall # Call to the 0S, equivalent to syscall
mSQg: | .ascC 11Z "Hello!" PC moves from user space to kernel space (more on this later)

1

This is a special instruction that triggers a trap to the operating system (OS)

 The OS looks at a7 (system call number = 4) and a0 (address of string)
e It performs the requested service: writing “Hel Lo !” to the terminal

- @0

Executing read System Call
int main(argc, argv) {
?ead(f);

}.“

59

Executing read System Call

int main(argc, argv) {

read(f); ~ " C :

stack frame for main() | *

} .
user stack : interrupt stack

user space :

60

Executing read System Call

int main(argc, argv) {

read(f); return address

€ stack frame for main() | °
} :
~ read: :
1i a7, 63 stack frame for _read :
ecall <+« PC :
ret : "'
ser space user stack . interrupt stack
: :

In RISC-V, the equivalent of the syscall instruction found in some other architectures is called ecall (Environment Call)

. @0

Executing read System Call

int main(argc, argv) {

read(f); return address

) LI I stack frame for main()
s
—re.ad : stack frame for read
11 a7, 63 -
ecall
ret *
user stack interrupt stack
user space

HandleIntrSyscall:
mv %sp, $pcb +«— PC

mv $stacktop, %sp

It saved the PC push %Rn

PCB: sp .c.:.all _HandleSyscall

pop %Rn
mv $pcb, &sp

return_from_interrupt ‘@@@@\

Executing read System Call

int main(argc, argv) {

read(f); return address

) LI I .. stack frame for main()
s ..
—re.ad : \“ stack frame for read
11 a7, 63 -
ecall SP
ret *
user stack interrupt stack
user space

HandleIntrSyscall:
mv %sp, $pcb
mv $stacktop, %sp PC

It saved the PC push %Rn

PCB: sp .c.:.all _HandleSyscall

pop %Rn
mv $pcb, &sp

return_from_interrupt ‘@@@@\

Executing read System Call

int main(argc, argv) {

read(f); return address

) LI I .. stack frame for main() .

} .

—re.ad : \“ stack frame for read E

11 a7, 63 - I

ecall |
ret : *

user stack . interrupt stack
user space :

HandleIntrSyscall:
mv %sp, $pcb

mv $stacktop, %sp o PC

It saved the PC push %Rn

PCB: Sp .c.:.all _HandleSyscall

pop %Rn
mv $pcb, &sp

return_from_interrupt ‘@@@@\

Executing read System Call

int main(argc, argv) {

read(f); return address

) LI I .. stack frame for main()
s ..
—re.ad : \“ stack frame for read
11 a7, 63 -
ecall
ret
user stack interrupt stack
user space

HandleIntrSyscall:
mv %sp, $pcb
mv $stacktop, %sp

It saved the PC push %Rn

PCB: Sp .c.:.all _HandleSyscall

pop %Rn
mv $pcb, &sp

return_from_interrupt ‘@@@@\

Executing read System Call

int main(argc, argv) {

read(f); return address

|
|
|
|
|
|
drmmmcasnaa .. stack frame for main() |

} R .

sss :

_read: ‘. . stack frame for
11 a7, 63 stack frame for _read . _handleSyscall
ecall .
ret :

|
|
user stack . interrupt stack
user space .
e aen oo int handleSyscall(int type) {
mv $stacktop, %sp switch (type) «—PC
It saved the PC push %Rn {
PCB: sp call _handleSyscall } case READ: ..
;op %Rn }

mv $pcbh, &sp

return_from_interrupt ‘@@@@\

Executing read System Call

int main(argc, argv) {

read(f); return address

) LI I .. stack frame for main() .

} .
—re.ad : \“ stack frame for read E
11 a7, 63 - I
ecall |
ret :

user stack . interrupt stack
user space :

HandleIntrSyscall:
mv %sp, $pcb
mv $stacktop, %sp

It saved the PC push %Rn

PCB: s call _handleSyscall
P) «—PC
pop %Rn

mv $pcb, &sp

return_from_interrupt ‘@@@@\

Executing read System Call

int main(argc, argv) {

read(f); return address

) LI I .. stack frame for main() .

} .

—re.ad : \“ stack frame for read E

11 a7, 63 - I

ecall |
ret : *

user stack . interrupt stack
user space :

HandleIntrSyscall:
mv %sp, $pcb
mv $stacktop, %sp

It saved the PC push %Rn

PCB: sp call _handleSyscall

pop %Rn —
mv $pcb, &sp PC

return_from_interrupt ‘@@@@\

Executing read System Call

int main(argc, argv) {

read(f); return address

) LI I .. stack frame for main() .
} :
—re.ad : \“ stack frame for _read E
11 a7, 63 - I
ecall SP |

ret : *

user stack : interrupt stack

user space :

HandleIntrSyscall:
mv %sp, $pcb
mv $stacktop, %sp

It saved the PC push %Rn

PCB: sp .c.:.all _HandleSyscall

pop %Rn

mv $pcb, &sp <«
return_from_interrupt PC ‘@@@@\

Executing read System Call

int main(argc, argv) {

read(f); return address

) LI I .. stack frame for main() .
} :
—re.ad : \“ stack frame for _read E
11 a7, 63 - I
ecall SP |

ret PC : *

user stack : interrupt stack

user space :

HandleIntrSyscall:
mv %sp, $pcb
mv $stacktop, %sp

It saved the PC push %Rn

PCB: sp .c.:.all _HandleSyscall

pop %Rn
mv $pcb, &sp

return_from_interrupt ‘@@@@\

Executing read System Call

int main(argc, argv) {
?ead(f);

}.“

_read:
11 a7, 63
ecall
ret

«— PC stack frame for main()

v

interrupt stack

user stack

user space

The Invariants to Remember

Per core, at most 1 process is RUNNING at any time
If CPU is in user mode, current process is RUNNING and its interrupt stack is empty

If process is RUNNING

* |ts PCB is not on any queue
 however, not necessarily in user mode

If process is RUNNABLE or WAITING

* |ts interrupt stack is non-empty and can be switched to
* |.e., has its registers saved on top of the stack
* |ts PCB is either on the run queue (if RUNNABLE) or on some wait queue (if WAITING)

If process is FINISHED

e |ts PCB is on finished queue

y oS0

