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Plan for Today

• Review of processes and syscall
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• A bit more on syscall

• Brief introduction to virtual memory



Review of OS and processes
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If we can run instructions directly on the CPU, why do we 
need an operating system?
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(a) how do multiple programs share CPU and memory without stepping on each other?

(b) how does the OS decide which process gets cache, memory, or I/O?



Process versus Program
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• A program consists of code and data


• It is specified in some programming language, e.g., C


• It is typically stored in a file on disk


• “Running a program” means creating a process 

• Can run a program multiple times! 

• One after the other, or even concurrently 

recipe

person actively cooking from that recipe (ingredients, tools, stove all in use)



A Day in the Life of a Process
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The source file: sum.c

program

The executable: sum Process is alive: process id pid xxx

Stack

Heap

Data

Text

sp



Process Life Cycle
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INIT OS allocates: PCB (to track its state, registers, etc.) 
and an address space (code, data, stack)

READY
The process is ready to run, but not currently on the 
CPU; it’s waiting in the ready queue for the 
scheduler to pick it

Critical: when the event completes, the 
OS moves it back to READY

WAITING

The process cannot proceed until 
some event occurs, e.g., waiting 
for I/O, waiting for another 
process (e.g., waitpid)

RUNNINGThe process is now 
executing on the CPU



Process Life Cycle
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INIT

READY

RUNNING

The process is ready to run, but not currently on the 
CPU; it’s waiting in the ready queue for the 
scheduler to pick it

The process is now 
executing on the CPU

OS allocates: PCB (to track its state, registers, etc.) 
and an address space (code, data, stack)

WAITING

The process cannot proceed until 
some event occurs, e.g., waiting 
for I/O, waiting for another 
process (e.g., waitpid)

Critical: when the event completes, the 
OS moves it back to READY

The time slice expired (preemption)



Process Life Cycle
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READY

RUNNING WAITING

TERMINATED

OS allocates: PCB (to track its state, registers, etc.) 
and an address space (code, data, stack)

The process is ready to run, but not currently on the 
CPU; it’s waiting in the ready queue for the 
scheduler to pick it

The process is now 
executing on the CPU

INIT

The process cannot proceed until 
some event occurs, e.g., waiting 
for I/O, waiting for another 
process (e.g., waitpid)

The process has finished 
executing, e.g., reached 
exit(), frees PCB

The time slice expired (preemption)

Critical: when the event completes, the 
OS moves it back to READY



Context Switching

10

The process by which an OS saves the state of a currently running process and 
restores the state of another process

• First, save the current process state
• Update the Process Control Block (PCB)
• Then, select the next process
• Restore the next process state
• Resume execution



Poll
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In an operating system, which statement correctly describes the difference 
between user space and kernel space?

PollEv.com /gguidi
Or send gguidi to 22333

https://pollev.com/gguidi


User space versus Kernel space
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this is where the core of the operating systems (the kernel) runs 

this is where regular programs live (apps, compilers, browsers, your code, etc.) 



User Space versus Kernel Space
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• User space is where programs (apps, compilers, browsers, your code, etc.) run

• User space applications cannot directly access the system’s hardware resources

• It is restricted and isolated from the kernel space to ensure system stability and 
security

• Kernel space is where the core of the operating system (the kernel) runs

• It has full access to hardware (e.g., CPU, memory, disks, devices)

• Responsible for: scheduling processes, managing memory, handling I/O, 
enforcing security and isolation



How They Interact
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User programs cannot just “walk” into kernel space: yhey have to ask for help through 
a system call

# RISC assembly pseudo-code 
li   a7, 4            # Load system call code for 'print string’: in user space 
la   a0, msg          # Load the address of the message: in user space 
ecall                 # Trap to the OS: switch from user space to kernel space 
...                   # The OS examines v0 (to know which service you’re 
requesting) and a0 (the argument) 

     
msg: .asciiz “Hello!" # Data stored in user space



Memory Layout 32-Bit Kernel
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In a 32-bit system, the total addressable memory is 4 GB:


• The division of memory into 1 GB for kernel space and 3 

GB for user space is a common configuration


• It allows the OS to manage memory efficiently while 
providing ample space for user applications

these addresses are unavailable in user mode
this is a software convention 



Memory Layout 64-Bit Kernel
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In a 64-bit system, the total memory is 16 exabytes:


• Current CPUs don’t use all 64 bits of address lines

The purpose of the canonical hole: 


• It helps in detecting invalid memory accesses


• It enhances security and stability

The available address space is split into 2 halves separated 

by a very big hole called “canonical hole”



Common system calls
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Poll
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Given a successful call to fork(), how many processes exist after the call, 
and what does the parent process receive as a return value?

PollEv.com /gguidi
Or send gguidi to 22333

https://pollev.com/gguidi


Ex: fork()
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• fork() function prototype:

pid_t fork(pid_t pid);

• fork() is used to create a new process by duplicating the calling process

• The new process is called the child process

• The original process is called the parent process

• fork() is called, then both processes continue executing the code after the 

fork() call, but they have different PIDs



fork() Return Value
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Process Return value of fork()

Parent PID of the child

Child 0

Error -1

• If fork() fails, it returns -1 in the parent and no child is created

• fork() function prototype:

pid_t fork(pid_t pid);



Ex: exec()
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• exec() replaces the current process image with a new process image

• Commonly used functions: execl(), execp(), execv(), etc.

• exec() function prototype:

int execl(const char *path, const char *arg, ...);

• exec() basically changes what a process does



Ex: exec()
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#include <stdio.h> 
#include <unistd.h> 

int main() { 
    printf("Before exec\n"); 
    execl("/bin/ls", "ls", NULL); 
    perror("execl"); // this will only be executed if exec fails 
    return 0; 
}

The perror("execl") function call is used to print an error message to the standard error stream (stderr)

If execl() fails, perror(“execl”)will print an error message, e.g.: execl: No such file or directory



Ex: waitpid()
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• waitpid() is used to wait for state changes in a child process
• It can be used to wait for a specific child process to terminate

• waitpid() function prototype:

pid_t waitpid(pid_t pid, int *status, int options);

Return value Return value of waitpid()

> 0 PID of the child whose state has changed

0 (only if WNOHANG used) — no child has exited yet

-1 -1



Ex: waitpid()
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• waitpid() is used to wait for state changes in a child process
• It can be used to wait for a specific child process to terminate

• waitpid() function prototype:

pid_t waitpid(pid_t pid, int *status, int options);

• pid specifies the child process to wait for. It can take several values:


• pid > 0: it waits for the child whose process ID is equal to pid


• pid == 0: it waits for any child process whose process group ID is equal to that of the calling process


• pid == -1: it waits for any child process; this is equivalent to wait()


• pid < -1: it waits for any child process whose process group ID is equal to the absolute value of pid



Ex: waitpid()

25

• waitpid() is used to wait for state changes in a child process
• It can be used to wait for a specific child process to terminate

• waitpid() function prototype:

pid_t waitpid(pid_t pid, int *status, int options);

• pid specifies the child process to wait for. It can take several values:


• pid > 0: it waits for the child whose process ID is equal to pid


• pid == 0: it waits for any child process whose process group ID is equal to that of the calling process


• pid == -1: it waits for any child process; this is equivalent to wait()


• pid < -1: it waits for any child process whose process group ID is equal to the absolute value of pid
Collection of one or more processes



Ex: waitpid()
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• waitpid() is used to wait for state changes in a child process
• It can be used to wait for a specific child process to terminate

• waitpid() function prototype:

pid_t waitpid(pid_t pid, int *status, int options);

• pid specifies the child process to wait for. It can take several values:


• pid > 0: it waits for the child whose process ID is equal to pid


• pid == 0: it waits for any child process whose process group ID is equal to that of the calling process


• pid == -1: it waits for any child process; this is equivalent to wait()


• pid < -1: it waits for any child process whose process group ID is equal to the absolute value of pid



Ex: waitpid()

27

• waitpid() is used to wait for state changes in a child process
• It can be used to wait for a specific child process to terminate

• waitpid() function prototype:

pid_t waitpid(pid_t pid, int *status, int options);

• pid specifies the child process to wait for. It can take several values:


• pid > 0: it waits for the child whose process ID is equal to pid


• pid == 0: it waits for any child process whose process group ID is equal to that of the calling process


• pid == -1: it waits for any child process; this is equivalent to wait()


• pid < -1: it waits for any child process whose process group ID is equal to the absolute value of pid



Ex: waitpid()
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• waitpid() is used to wait for state changes in a child process
• It can be used to wait for a specific child process to terminate

• waitpid() function prototype:

pid_t waitpid(pid_t pid, int *status, int options);

• status: A pointer to an integer where the exit status of the child process will be stored.


• options: Provides additional options to modify the behavior of  waitpid() 

It lets the parent choose which child to wait for and how to wait.



waitpid() vs wait()
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• waitpid() is used to wait for state changes in a child process
• It can be used to wait for a specific child process to terminate

• waitpid() function prototype:

pid_t waitpid(pid_t pid, int *status, int options);

Call It means…

wait(&status) It waits for any child to terminate

waitpid(-1, &status, 0) Same as wait()

waitpid(pid, &status, 0) It waits for that specific pid child



Ex: waitpid()
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#include <sys/types.h> 
#include <sys/wait.h> 
#include <unistd.h> 
#include <stdio.h> 

int main() { 
    pid_t pid = fork();            // create new process 
    if (pid == 0) {                // if true, it means you’re the child process 
        printf("Child process\n”); // child prints a message to standard output 
        _exit(0);                  // terminates the child process immediately with exit status 0 
    } else {                       // it means you’re the parent process      
        int status; 
        pid_t wpid = waitpid(pid, &status, 0);  // parent waits for the specific child whose PID is pid to finish 
        if (wpid == -1) {          // if something went wrong, prints a system error message 
            perror("waitpid"); 
        } else {                    
           if (WIFEXITED(status)) 
                printf("Child exited with status %d\n", WEXITSTATUS(status)); 
        } 
    } 
    return 0; 
}



Ex: waitpid() + execlp()
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#include <stdio.h> 
#include <unistd.h> 
#include <sys/wait.h> 

int main() { 
    pid_t pid = fork();                  // creates new process 

    if (pid == 0) { 
                    // child runs "ls -l" 

        execlp("ls", "ls", "-l", NULL);  // replaces the current process image with a new program     
        perror("execlp failed"); 
    } else if (pid > 0) { 
        int status; 
        pid_t w = waitpid(pid, &status, 0);  // parent waits for child 
        if (w == -1) { 
            perror("waitpid failed"); 
        } else if (WIFEXITED(status)) { 
            printf("Child exited with status %d\n", WEXITSTATUS(status)); 
    }  
}



How Processes Are Created?
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• fork():

• It allocates the process ID pid
• Create and initialize PCB

• Create and initialize a new address space

• Then, inform the scheduler a new process is ready to run



How Processes Are Created?
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• fork():

• It allocates the process ID pid
• Create and initialize PCB

• Create and initialize a new address space

• Then, inform the scheduler a new process is ready to run

• exec(program, arguments):

• Load the program into the address space

• Copy arguments into memory address space

• Then, initialize hardware context to stat execution at “start”



How Processes Are Terminated?
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• The system calls for termination are:

• exit(): used by a process to terminate itself
• abort(): used by a parent process to terminate a child process
• wait() and waitpid(): used by a parent process to wait for the 

termination of a child process and retrieve its exit status



False Friend kill()
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• Despite its name, kill() doesn’t necessarily kill a process; it can send any signal, 
including ones that don’t terminate the target

• kill() function prototype:

int kill(pid_t pid, int sig);

Outcome Return value of kill()

Success 0

Error -1



fork() + exec()
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Child process doesn’t exist yet



fork() + exec()
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Child PID in parent process

Child PID in child process



fork() + exec()
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Fork returns twice!



fork() + exec()
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Waits until the child process exits



fork() + exec()
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If and else both excuted!



fork() + exec()
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fork() + exec()

42



Brief Summary
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• A process is an abstraction of a computer


• A process is not a program


• A context captures the state of the processor


• The implementation uses two spaces: user space and kernel space


• A Process Control Block (PCB) is a kernel data structure that saves context 
and has other information about the process



System Signals
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A signal is away for processes to communicate with each other


Common signals:

• SIGINT: the interrupt signal

• SIGTERM: the termination signal is used to request a process to terminate 

• SIGKILL: the kill signal forces a process to terminate immediately; cannot be caught or 

ignored

• SIGSEGV: the segmentation fault (e.g., process tries to access an invalid memory location)

• SIGCHLD: it’s sent to a parent process when a child process terminates

• SIGALRM: it’s alarm clock signal (e.g., timer)

A signal sent to the processor by hardware or software indicating an event that 
needs immediate attention



Sending Signals
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You can send signals using the kill() function or the raise() function:

kill(pid_t pid, int sig)
kill() sends the signal sig to the process with the process ID pid

raise(int sig)
raise() sends the signal sig to the calling process itself



Interrupt
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An interrupt is a signal sent to the processor by hardware or software indicating 
an event that needs immediate attention



Types of Interrupt
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• Hardware Interrupt: Generated by external hardware devices to get the CPU’s attention

• Keyboard input (key press)

• Mouse movement or click

• Disk I/O completion

• Network packet arrival

Type Description

Maskable Interrupt Can be temporarily “masked” (disabled) by the CPU; used for regular hardware events

Non-Maskable Interrupt Cannot be disabled; reserved for critical events like hardware failure or power issues



Types of Interrupt
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• System calls (e.g., syscall instruction)

• Exceptions like divide-by-zero or invalid memory access

• Breakpoints during debugging

• Software Interrupt: Generated by a program or the operating system, typically to 
request a system service or perform an exception

Type Description

System Call Interrupt Triggered by a program to request OS services (e.g., file read/write)

Exception Interrupt Generated automatically when an error or specific condition occurs (divide by zero, 
page fault)

Software-Generated Signal Explicitly triggered in software (e.g., raise(), kill() in Unix)



Instruction Cycle and Interrupt
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FETCH DECODE EXECUTE

HALT or NEXT 
INSTRUCTIONINTERRUPT?INTERRUPT 

CYCLE

Y N



How Interrupts Work
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• Interrupt Signal 

• An interrupt signal is sent to the CPU by a hardware device or software

• Saving State

• The CPU saves the current state of the running process (e.g., program counter, 

registers) so it can resume execution later

• Interrupt Handling

• The CPU transfers control to the interrupt handler associated with the interrupt. The 

interrupt handler processes the event (e.g., reading data from a device)

• Restoring State

• The CPU restores the saved state and resumes execution of the interrupted process



How Interrupts Work

51

• Interrupt Signal 

• An interrupt signal is sent to the CPU by a hardware device or software

• Saving State

• The CPU saves the current state of the running process (e.g., program counter, 

registers) so it can resume execution later

• Interrupt Handling

• The CPU transfers control to the interrupt handler associated with the interrupt. The 

interrupt handler processes the event (e.g., reading data from a device)

• Restoring State

• The CPU restores the saved state and resumes execution of the interrupted process



How Interrupts Work
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• Interrupt Signal 

• An interrupt signal is sent to the CPU by a hardware device or software

• Saving State

• The CPU saves the current state of the running process (e.g., program counter, 

registers) so it can resume execution later

• Interrupt Handling

• The CPU transfers control to the interrupt handler associated with the interrupt. The 

interrupt handler processes the event (e.g., reading data from a device)

• Restoring State

• The CPU restores the saved state and resumes execution of the interrupted process



How Interrupts Work
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• Interrupt Signal 

• An interrupt signal is sent to the CPU by a hardware device or software

• Saving State

• The CPU saves the current state of the running process (e.g., program counter, 

registers) so it can resume execution later

• Interrupt Handling

• The CPU transfers control to the interrupt handler associated with the interrupt. The 

interrupt handler processes the event (e.g., reading data from a device)

• Restoring State

• The CPU restores the saved state and resumes execution of the interrupted process



Why Interrupt?
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• Efficiency,

• Responsiveness,

• And, multitasking

To avoid constant polling; CPU works while waiting for I/O

React immediately to I/O and user input

Timer interrupts let OS switch between processes



How does a system call actually work?
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INTERRUPT?INTERRUPT 
CYCLE

Y



How System Calls Work
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They act as the bridge between user-level applications and the kernel:

• System Call Request 

• The application requests a system call by invoking a corresponding function provided by the 

operating system’s API

• Switch to Kernel Mode

• The CPU switches from user mode to kernel mode

• Execution in Kernel

• The kernel receives the system call request and performs the necessary operations

• Return to User Mode

• The kernel switches the CPU back to user mode and returns control to the calling process



Executing a System Call
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• Process
1. Calls systems call function in library

2. Places arguments in registers and/or pushes them onto user stack

3. Places syscall type in a dedicated register

4. Then, executes syscall or ecall (RISC-V) machine instruction

• Kernel
1. Executes syscall or ecall (RISC-V) interrupt handler 

2. Places result in a dedicated register

3. Executes return_from_interrupt interrupt handler 

• Process
1. Executes return_from_function



Conceptual RISC-V Print “Hello”
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# RISC assembly pseudo-code 
li   a7, 4          # Load system call code for 'print string' 
la   a0, msg        # Load address of message 
ecall               # Call to the OS, equivalent to syscall 
... 
msg: .asciiz "Hello!"

Conventionally, a7 holds the system call number in RISC-V: it tells the OS which service the program is asking for

This is a special instruction that triggers a trap to the operating system (OS)

• The OS looks at a7 (system call number = 4) and a0 (address of string)

• It performs the requested service: writing “Hello!” to the terminal

PC moves from user space to kernel space (more on this later)



Executing read System Call
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int main(argc, argv) { 
… 
read(f); 
… 

} 



Executing read System Call

60

int main(argc, argv) { 
… 
read(f); 
… 

} 

user space
kernel space

user stack interrupt stack

PC

SP
stack frame for main()



Executing read System Call
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int main(argc, argv) { 
… 
read(f); 
… 

} 

user space
kernel space

user stack interrupt stack

stack frame for main()

stack frame for _read

SP

_read: 
li a7, 63 
ecall 
ret

In RISC-V, the equivalent of the syscall instruction found in some other architectures is called ecall (Environment Call)

PC

return address



Executing read System Call
int main(argc, argv) { 
… 
read(f); 
… 

} 

user space
kernel space

user stack interrupt stack

stack frame for main()

stack frame for _read

SP

_read: 
li a7, 63 
ecall 
ret

return address

It saved the PC
PCB: sp

HandleIntrSyscall: 
mv %sp, $pcb 
mv $stacktop, %sp 
push %Rn 
… 
call _HandleSyscall 
… 
pop %Rn 
mv  $pcb, &sp 
return_from_interrupt 

PC



Executing read System Call
int main(argc, argv) { 
… 
read(f); 
… 

} 

user space
kernel space

user stack interrupt stack

stack frame for main()

stack frame for _read

SP

_read: 
li a7, 63 
ecall 
ret

return address

It saved the PC
PCB: sp

PC
HandleIntrSyscall: 

mv %sp, $pcb 
mv $stacktop, %sp 
push %Rn 
… 
call _HandleSyscall 
… 
pop %Rn 
mv  $pcb, &sp 
return_from_interrupt 



Executing read System Call
int main(argc, argv) { 
… 
read(f); 
… 

} 

user space
kernel space

user stack interrupt stack

stack frame for main()

stack frame for _read_read: 
li a7, 63 
ecall 
ret

return address

PCB: sp

PC

SP

It saved the PC

HandleIntrSyscall: 
mv %sp, $pcb 
mv $stacktop, %sp 
push %Rn 
… 
call _HandleSyscall 
… 
pop %Rn 
mv  $pcb, &sp 
return_from_interrupt 



HandleIntrSyscall: 
mv %sp, $pcb 
mv $stacktop, %sp 
push %Rn 
… 
call _HandleSyscall 
… 
pop %Rn 
mv  $pcb, &sp 
return_from_interrupt 

Executing read System Call
int main(argc, argv) { 
… 
read(f); 
… 

} 

user space
kernel space

user stack interrupt stack

stack frame for main()

stack frame for _read_read: 
li a7, 63 
ecall 
ret

return address

PCB: sp
It saved the PC

PC

Rn

…

R1
SP



HandleIntrSyscall: 
mv %sp, $pcb 
mv $stacktop, %sp 
push %Rn 
… 
call _handleSyscall 
… 
pop %Rn 
mv  $pcb, &sp 
return_from_interrupt 

Executing read System Call
int main(argc, argv) { 
… 
read(f); 
… 

} 

user space
kernel space

user stack

stack frame for main()

stack frame for _read_read: 
li a7, 63 
ecall 
ret

return address

PCB: sp
It saved the PC

interrupt stack

Rn

…

R1

PC

stack frame for 
_handleSyscall

int handleSyscall(int type) {  
switch (type)  
{
case READ: …

} 
}

SP



Executing read System Call
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HandleIntrSyscall: 
mv %sp, $pcb 
mv $stacktop, %sp 
push %Rn 
… 
call _handleSyscall 
… 
pop %Rn 
mv  $pcb, &sp 
return_from_interrupt 

int main(argc, argv) { 
… 
read(f); 
… 

} 

user space
kernel space

user stack

stack frame for main()

stack frame for _read_read: 
li a7, 63 
ecall 
ret

return address

PCB: sp
It saved the PC

interrupt stack

Rn

…

R1

PC

SP



Executing read System Call
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HandleIntrSyscall: 
mv %sp, $pcb 
mv $stacktop, %sp 
push %Rn 
… 
call _handleSyscall 
… 
pop %Rn 
mv  $pcb, &sp 
return_from_interrupt 

int main(argc, argv) { 
… 
read(f); 
… 

} 

user space
kernel space

user stack

stack frame for main()

stack frame for _read_read: 
li a7, 63 
ecall 
ret

return address

PCB: sp
It saved the PC

interrupt stack

SP

PC



HandleIntrSyscall: 
mv %sp, $pcb 
mv $stacktop, %sp 
push %Rn 
… 
call _HandleSyscall 
… 
pop %Rn 
mv  $pcb, &sp 
return_from_interrupt 

Executing read System Call
int main(argc, argv) { 
… 
read(f); 
… 

} 

user space
kernel space

user stack interrupt stack

stack frame for main()

stack frame for _read

SP

_read: 
li a7, 63 
ecall 
ret

return address

It saved the PC
PCB: sp

PC



HandleIntrSyscall: 
mv %sp, $pcb 
mv $stacktop, %sp 
push %Rn 
… 
call _HandleSyscall 
… 
pop %Rn 
mv  $pcb, &sp 
return_from_interrupt 

Executing read System Call
int main(argc, argv) { 
… 
read(f); 
… 

} 

user space
kernel space

user stack interrupt stack

stack frame for main()

stack frame for _read

SP

_read: 
li a7, 63 
ecall 
ret

return address

It saved the PC
PCB: sp

PC



Executing read System Call
int main(argc, argv) { 
… 
read(f); 
… 

} 

user space
kernel space

user stack interrupt stack

stack frame for main()

_read: 
li a7, 63 
ecall 
ret

PC

SP



The Invariants to Remember
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• Per core, at most 1 process is RUNNING at any time

• If CPU is in user mode, current process is RUNNING and its interrupt stack is empty

• If process is RUNNING

• Its PCB is not on any queue

• however, not necessarily in user mode

• If process is RUNNABLE or WAITING

• Its interrupt stack is non-empty and can be switched to

• i.e., has its registers saved on top of the stack 

• Its PCB is either on the run queue (if RUNNABLE) or on some wait queue (if WAITING)

• If process is FINISHED

• Its PCB is on finished queue


