Gornell Bowers C1S
Computer Science

 —

CS3410: Computer Systems and Organization
LEC19: System Calls

Professor Giulia Guidi
Monday, November 3, 2025

Credits: Bala, Bracy, Garcia, Guidi, Kao, Sampson, Sirer, Weatherspoon

1

Plan for Today

 Review of processes

 The magic world of syscall

Review of OS and processes

From Hardware View to System View

Compiled Program

Process

Address Spaces

Operating System

Processor L1$ L2 Memory
Hardware

Threads

If we can run instructions directly on the CPU, why do we
need an operating system?

Conceptual RISC-V Print “Hello”

Conventionally, a7 holds the system call number: it tells the OS which service the program is asking for

RISCTassembly pseudo—-code

i1 a/, 4 # Load system call code for 'print string’
La ad, msg # Load address of message
ecall # Call to the 0S

msg: .asciiz "Hello!"

* The program is saying: “| want to use system call #4, i.e., print string”
 Opcode for the OS

Conceptual RISC-V Print “Hello”

Conventionally, a7 holds the system call number: it tells the OS which service the program is asking for

RISCTassembly pseudo—-code

i a7, 4 # Load system call code for 'print string’
La ad, msg # Load address of message

ecall # Call to the 0S

mSQg: | .ascC 11Z "Hello!" PC moves from user space to kernel space (more on this later)

1

This is a special instruction that triggers a trap to the operating system (OS)

 The OS looks at a/ (system call number = 4) and a0 (address of string)
e |t performs the requested service: writing “Hello!” to the terminal

: OE0)

Conceptual RISC-V Print “Hello”

Conventionally, a7 holds the system call number: it tells the OS which service the program is asking for

RISCTassembly pseudo—-code

i1 a/, 4 # Load system call code for 'print string’
la a0, msg # Load address of message
ecall # Call to the 0S

.aSC11z = “store the ASCII characters plus a

. . 11 L
msg:|.asciiz "Hello!™ —— = = . ..

This is a special instruction that triggers a trap (mechanism to enter the OS) to the operating system (OS)

 The OS can read those bytes from the process’s memory and print them

recipe Process versus Program

1

* A program consists of code and data
e |t is specified in some programming language, €.g., C
* |t is typically stored in a file on disk

 “Running a program” means creating a process
 Can run a program multiple times!

* One after the other, or even concurrently

Process # Program

* Program = recipe () = code + data

* Process = chef actively cooking (active, doing things, using tools) = mutable data, files

 The same program can be run multiple times simultaneously, e.g., 1 program,

2 Processes

> . /P rogram & many processes can originate from the same program, just as many people
S /p I"Og ram & can independently cook the same recipe

o ook

Operating System

The Operating System (OS) acts as an illusionist:

* Any program we run doesn't need to know that the OS or other programs exist

 Any program we run doesn't need to worry about how syscalls actually work

The Operating System (OS) acts as a conductor:

 Recelve commands from the user and assigns computer resources to tasks

The Operating System (OS) acts as a referee:

 Keep track of what processes are running, and assign appropriate permissions

11 ‘@@@@\

Day In the life of a process

12

A Day In the Life of a Process

The source file: sum. C

#include <stdio.h>
int max = 10;
int main () {

int sum = 0;

add(max, &sum);
printf(“%d”, sum);

program

0040 0000
-

e
P
D

=

©
&

1020 0000/-,
£ max
<

13

0C40023C
21035000
1b80050c
8C048004
21047002
0C400020
19201000
21040330
22500102

-==» Process is alive: process id p1d XXX

Stack

sp —» "'
)

Heap

Data

ext

Process Control Block (PCB)

* For each process, the OS has a PCB containing:

» Process ID p1id

* Process State, e.g., running, waiting, ready
e Process User uid

» Memory Management Information

e Scheduling Information

» Parent Process ID ppid

e ...and more!

14

Process Life Cycle

INIT OS allocates: PCB (to track its state, registers, etc.)
and an address space (code, data, stack)

The process is ready to run, but not currently on the
READY CPU; it’s waiting in the ready queue for the
scheduler to pick it

The process is now
executing on the CPU

RUNNING WAITING

The process cannot proceed until
some event occurs, e.g., waiting
for I/O, waiting for another
process (e.g., waitpid)

Critical: when the event completes, the
OS moves it back to READY

15

Process Life Cycle

INIT OS allocates: PCB (to track its state, registers, etc.)
and an address space (code, data, stack)

The process is ready to run, but not currently on the
READY CPU; it’s waiting in the ready queue for the
scheduler to pick it

The time slice expired (preemption)

The process is now
executing on the CPU

RUNNING WAITING

The process cannot proceed until
some event occurs, e.g., waiting
for I/O, waiting for another
process (e.g., waitpid)

Critical: when the event completes, the
OS moves it back to READY

16

Process Life Cycle

INIT OS allocates: PCB (to track its state, registers, etc.)
and an address space (code, data, stack)

The process is ready to run, but not currently on the
READY CPU; it’s waiting in the ready queue for the
scheduler to pick it

The time slice expired (preemption)

The process is now
executing on the CPU

RUNNING WAITING

The process cannot proceed until
some event occurs, e.g., waiting
The process has finished for I/0, waiting for another

executing, e.g., reached TERMINATED process (e.g., waltpid)

exit(), frees PCB Critical: when the event completes, the

OS moves it back to READY

17

Ok, new material

18

Context Switching

The process by which an OS saves the state of a currently running process and
restores the state of another process

19

Context Switching

The process by which an OS saves the state of a currently running process and
restores the state of another process

CPU

Process P1 Process P2
Interrupt or system call

» First, save the current process state Erecuting |

* Update the Process Control Block (PCB) :

* Then, select the next process Interrupt or system call " | prcuuna
* Restore the next process state =

* Resume execution e

Executing l‘

20

Performance Consideration

Overhead
* Context switching involves overhead because saving and restoring process

states takes time

* The goal is to minimize this overhead to maintain system performance
* Context switching has to be efficient for the smooth operation of a

multitasking system

21

this is where the core of the operating systems (the kernel) runs

|

User space versus Kernel space

22

User Space versus Kernel Space

 User space is where programs (apps, compilers, browsers, your code, etc.) run
* User space applications cannot directly access the system’s hardware resources

* |t is restricted and isolated from the kernel space to ensure system stability and
security

 Kernel space is where the core of the operating system (the kernel) runs
* |t has full access to hardware (e.g., CPU, memory, disks, devices)

 Responsible for: scheduling processes, managing memory, handling |/O,
enforcing security and isolation

23

How They Interact

User programs cannot just “walk” into kernel space: yhey have to ask for help through
a system call

RISC assembly pseudo-code

i1 a7/, 4 # Load system call code for 'print string’: 1n user space
la a0, msg # Load the address of the message: 1n user space
ecall # Trap to the 0S: switch from user space to kernel space

The 0S examines v@ (to know which service you’re
requesting) and a® (the argument)

msg: .asciiz “Hello!"™ # Data stored in user space

24

Memory Layout 32-Bit Kernel

XFFFFFFFF

1 GB — —P these addresses are unavailable in user mode

cooo0000 this |S @ software convention

Stack
Automatic variables (local to a function's scope), caller’s return address, etc.
(grows towards lower memory addresses)

1t Heap 1
3 GB — Dynamic memory allocation through malloc/new free/delete
(grows towards higher memory addresses)

In a 32-bit system, the total addressable memory is 4 GB:

* The division of memory into 1 GB for kernel space and 3

GEB for user space is a common configuration

Text . :
Binary image of the process (e.g. /bin/1s) 0 08048000 |t allows the OS to manage memory efficiently while

0x00000000 providing ample space for user applications

25

128TiB

128TiB

Memory Layout 64-Bit Kernel

OxFFFFFFFFFFFFFFFF
Kernel
64 TiB Addresses
Physical
OxFFFF800000000000
“Canonical Hole" Empty
Space
Ox00007FFFFFFFFFFF
0x0000000000000000

64-Bit Virtual Address Space

In a 64-bit system, the total memory is 16 exabytes:

e Current CPUs don’t use all 64 bits of address lines

The available address space is split into 2 halves separated

by a very big hole called

The purpose of the
* It helps In detecting invalid memory accesses

* [t enhances security and stabillity

20

Common system calls

27

System Calls

* A process runs on a CPU
» (Can access the Operating System (OS) kernel through “system calls”

* A way for the user-space application to request services from the kernel

28

Why a “Skinny” Interface?

o Portability
e |t’s easler to Implement and maintain

e Security

e It's a “small attack surface”: easier to protect against vulnerabilities

[t’s not just the OS interface; the Internet “IP” later is another good example of a
skinny interface

" @0

Common System Calls

read(): Reads data from a file descriptor

write(): Writes data to a file descriptor

open(): Opens a file and returns a file descriptor

close(): Closes an open file descriptor

fork(): Creates a new process

exec (): Replaces the current process image with a new process image

waltpid(): Waits for a specific child process to change state

30

Error Handling

 The system calls often return =1 to indicate an error
 The global variable errno is set to indicate the specific error code
 The perror() function can be used to print a human-readable error

message based on the value of errno

31

Error Handling

#include <stdio.h>
#include <fcntl.h>

#include <errno.h>

int main() {
int fd = open("nonexistent.txt", O_RDONLY);

if (fd ==) <
perror (“8pen—Fatted™ > prints human-readable message

printf("errno = %d\n'", errno);— the specific error code

32

Ex: fork()

fork() is used to create a new process by duplicating the calling process
* The new process is called the child process

* The original process is called the parent process

fork() function prototype:
pid t fork(pid t pid);

fork() is called, then both processes continue executing the code after the

fork() call, but they have different PIDs

33

fork () Return Value

 fork() function prototype:
pid t fork(pid t pid);

Process Return value of fork()

paent otthechid
oha o
oo

e |f fork() fails, it returns —1 in the parent and no child is created

34

Ex: fork()

#include <stdio.h>

#include <unistd.h>

int main() { The fork() call returns the pid of the child process to the parent process
pid_t pid = fork(); — The fork() call returns 0 to the newly created child process
if (pid == 0) { If true, it means you’re the child process

// child process
printf("Hello from the child process!\n");

} else if (pid > @) { |f> 0, it means you’re the parent process
// parent process

printf("Hello from the parent process!\n");

} else { If <0, it means something went wrong!
// fork failed If fork() fails, it returns -1 to the parent process
perror("fork");
} The getpid () function returns the PID of the calling process
return 0;

35

Why fork () Would Fail?

e Common fork () failure reasons:

 The system lacks enough memory to allocate for the new process
 The system’s process limit has been reached

 The process lacks the necessary permissions to create a new process
* Other resource limits are exceeded, e.g. CPU time limit

* Or even kernel-level issues, e.g., a bug

36

