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Plan for Today

• Review of processes
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• The magic world of syscall



Review of OS and processes
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From Hardware View to System View
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If we can run instructions directly on the CPU, why do we 
need an operating system?
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(a) how do multiple programs share CPU and memory without stepping on each other?

(b) how does the OS decide which process gets cache, memory, or I/O?



Conceptual RISC-V Print “Hello”
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# RISC assembly pseudo-code 
li   a7, 4          # Load system call code for 'print string' 
la   a0, msg        # Load address of message 
ecall               # Call to the OS 
... 
msg: .asciiz "Hello!"

Conventionally, a7 holds the system call number: it tells the OS which service the program is asking for

• The program is saying: “I want to use system call #4, i.e., print string”

• Opcode for the OS



Conceptual RISC-V Print “Hello”
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# RISC assembly pseudo-code 
li   a7, 4          # Load system call code for 'print string' 
la   a0, msg        # Load address of message 
ecall               # Call to the OS 
... 
msg: .asciiz "Hello!"

Conventionally, a7 holds the system call number: it tells the OS which service the program is asking for

This is a special instruction that triggers a trap to the operating system (OS)

• The OS looks at a7 (system call number = 4) and a0 (address of string)

• It performs the requested service: writing “Hello!” to the terminal

PC moves from user space to kernel space (more on this later)



Conceptual RISC-V Print “Hello”
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# RISC assembly pseudo-code 
li   a7, 4          # Load system call code for 'print string' 
la   a0, msg        # Load address of message 
ecall               # Call to the OS 
... 
msg: .asciiz "Hello!"

Conventionally, a7 holds the system call number: it tells the OS which service the program is asking for

This is a special instruction that triggers a trap (mechanism to enter the OS) to the operating system (OS)

• The OS can read those bytes from the process’s memory and print them

•

.asciiz = “store the ASCII characters plus a 
zero byte at the end”



Process versus Program
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• A program consists of code and data


• It is specified in some programming language, e.g., C


• It is typically stored in a file on disk


• “Running a program” means creating a process 

• Can run a program multiple times! 

• One after the other, or even concurrently 

recipe

person actively cooking from that recipe (ingredients, tools, stove all in use)



Process ≠ Program
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• The same program can be run multiple times simultaneously, e.g., 1 program, 
2 processes

> ./program & 
> ./program &

• Program = recipe (passive) = code + data


• Process = chef actively cooking (active, doing things, using tools) = mutable data, files

many processes can originate from the same program, just as many people 
can independently cook the same recipe



Operating System
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The Operating System (OS) acts as an illusionist:


• Any program we run doesn't need to know that the OS or other programs exist


• Any program we run doesn't need to worry about how syscalls actually work

The Operating System (OS) acts as a conductor:


• Receive commands from the user and assigns computer resources to tasks

The Operating System (OS) acts as a referee:


• Keep track of what processes are running, and assign appropriate permissions



Day in the life of a process
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A Day in the Life of a Process
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The source file: sum.c

program

The executable: sum Process is alive: process id pid xxx

Stack

Heap

Data

Text

sp



Process Control Block (PCB)
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• For each process, the OS has a PCB containing:

• Process ID pid

• Process State, e.g., running, waiting, ready

• Process User uid

• Memory Management Information

• …and more!

• Scheduling Information

• Parent Process ID ppid



Process Life Cycle
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INIT OS allocates: PCB (to track its state, registers, etc.) 
and an address space (code, data, stack)

READY
The process is ready to run, but not currently on the 
CPU; it’s waiting in the ready queue for the 
scheduler to pick it

Critical: when the event completes, the 
OS moves it back to READY

WAITING

The process cannot proceed until 
some event occurs, e.g., waiting 
for I/O, waiting for another 
process (e.g., waitpid)

RUNNINGThe process is now 
executing on the CPU



Process Life Cycle
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INIT

READY

RUNNING

The process is ready to run, but not currently on the 
CPU; it’s waiting in the ready queue for the 
scheduler to pick it

The process is now 
executing on the CPU

OS allocates: PCB (to track its state, registers, etc.) 
and an address space (code, data, stack)

WAITING

The process cannot proceed until 
some event occurs, e.g., waiting 
for I/O, waiting for another 
process (e.g., waitpid)

Critical: when the event completes, the 
OS moves it back to READY

The time slice expired (preemption)



Process Life Cycle
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READY

RUNNING WAITING

TERMINATED

OS allocates: PCB (to track its state, registers, etc.) 
and an address space (code, data, stack)

The process is ready to run, but not currently on the 
CPU; it’s waiting in the ready queue for the 
scheduler to pick it

The process is now 
executing on the CPU

INIT

The process cannot proceed until 
some event occurs, e.g., waiting 
for I/O, waiting for another 
process (e.g., waitpid)

The process has finished 
executing, e.g., reached 
exit(), frees PCB

The time slice expired (preemption)

Critical: when the event completes, the 
OS moves it back to READY



Ok, new material
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Context Switching
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The process by which an OS saves the state of a currently running process and 
restores the state of another process



Context Switching
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The process by which an OS saves the state of a currently running process and 
restores the state of another process

• First, save the current process state
• Update the Process Control Block (PCB)
• Then, select the next process
• Restore the next process state
• Resume execution



Performance Consideration
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Overhead

• Context switching involves overhead because saving and restoring process 

states takes time

• The goal is to minimize this overhead to maintain system performance

• Context switching has to be efficient for the smooth operation of a 

multitasking system



User space versus Kernel space
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this is where the core of the operating systems (the kernel) runs 

this is where regular programs live (apps, compilers, browsers, your code, etc.) 



User Space versus Kernel Space
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• User space is where programs (apps, compilers, browsers, your code, etc.) run

• User space applications cannot directly access the system’s hardware resources

• It is restricted and isolated from the kernel space to ensure system stability and 
security

• Kernel space is where the core of the operating system (the kernel) runs

• It has full access to hardware (e.g., CPU, memory, disks, devices)

• Responsible for: scheduling processes, managing memory, handling I/O, 
enforcing security and isolation



How They Interact
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User programs cannot just “walk” into kernel space: yhey have to ask for help through 
a system call

# RISC assembly pseudo-code 
li   a7, 4            # Load system call code for 'print string’: in user space 
la   a0, msg          # Load the address of the message: in user space 
ecall                 # Trap to the OS: switch from user space to kernel space 
...                   # The OS examines v0 (to know which service you’re 
requesting) and a0 (the argument) 

     
msg: .asciiz “Hello!" # Data stored in user space



Memory Layout 32-Bit Kernel
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In a 32-bit system, the total addressable memory is 4 GB:


• The division of memory into 1 GB for kernel space and 3 

GB for user space is a common configuration


• It allows the OS to manage memory efficiently while 
providing ample space for user applications

these addresses are unavailable in user mode
this is a software convention 



Memory Layout 64-Bit Kernel
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In a 64-bit system, the total memory is 16 exabytes:


• Current CPUs don’t use all 64 bits of address lines

The purpose of the canonical hole: 


• It helps in detecting invalid memory accesses


• It enhances security and stability

The available address space is split into 2 halves separated 

by a very big hole called “canonical hole”



Common system calls
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System Calls
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• A process runs on a CPU

• Can access the Operating System (OS) kernel through “system calls”

• A way for the user-space application to request services from the kernel



Why a “Skinny” Interface?
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• Portability

• Security

• It’s easier to implement and maintain

• It’s a “small attack surface”: easier to protect against vulnerabilities

It’s not just the OS interface; the Internet “IP” later is another good example of a 
skinny interface



Common System Calls
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• read(): Reads data from a file descriptor


• write(): Writes data to a file descriptor


• open(): Opens a file and returns a file descriptor


• close(): Closes an open file descriptor


• fork(): Creates a new process


• exec(): Replaces the current process image with a new process image


• waitpid(): Waits for a specific child process to change state



Error Handling
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• The system calls often return -1 to indicate an error


• The global variable errno is set to indicate the specific error code


• The perror() function can be used to print a human-readable error 

message based on the value of errno




Error Handling
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#include <stdio.h> 
#include <fcntl.h> 
#include <errno.h> 

int main() { 
    int fd = open("nonexistent.txt", O_RDONLY); 
    if (fd == -1) { 
        perror("Open failed");       
        printf("errno = %d\n", errno); 
    } 
}

the system call error 

prints human-readable message 

the specific error code



Ex: fork()
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• fork() function prototype:

pid_t fork(pid_t pid);

• fork() is used to create a new process by duplicating the calling process

• The new process is called the child process

• The original process is called the parent process

• fork() is called, then both processes continue executing the code after the 

fork() call, but they have different PIDs



fork() Return Value
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• fork() function prototype:

pid_t fork(pid_t pid);

Process Return value of fork()

Parent PID of the child

Child 0

Error -1

• If fork() fails, it returns -1 in the parent and no child is created



Ex: fork()
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#include <stdio.h> 
#include <unistd.h> 

int main() { 
    pid_t pid = fork(); 
    if (pid == 0) { 
        // child process 
        printf("Hello from the child process!\n"); 
    } else if (pid > 0) { 
        // parent process 
        printf("Hello from the parent process!\n"); 
    } else { 
        // fork failed 
        perror("fork"); 
    } 
    return 0; 
}

If true, it means you’re the child process

The fork() call returns the pid of the child process to the parent process
The fork() call returns 0 to the newly created child process

If > 0, it means you’re the parent process

If < 0, it means something went wrong!
If fork() fails, it returns -1 to the parent process

The getpid() function returns the PID of the calling process



Why fork() Would Fail?
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• Common fork() failure reasons:

• The system lacks enough memory to allocate for the new process

• The system’s process limit has been reached

• The process lacks the necessary permissions to create a new process

• Other resource limits are exceeded, e.g. CPU time limit

• Or even kernel-level issues, e.g., a bug


