Gornell Bowers GIS
Computer Science

\

#

I
3

" s g . i 5
: Lo
ReLLL L Dugnupus®’
-) o
» - ! >
QL TIRT T Y LG 4

"'(t«
/ .o{’.
W) "
315 A
> At

CS3410: Computer Systems and Organization
LEC18: Processes

Professor Giulia Guidi
Wednesday, October 29, 2025

Credits: Bala, Bracy, Garcia, Guidi, Kao, Sampson, Sirer, Weatherspoon
@IS0

1

Plan for Today

e Review of caches

A new topic: processes

Review of caches

Locality in a Nutshell

Locality is not just about how often a variable appears, but about how the value is reused

over time or space relative to the rest of the program

25000 1

Spatial Locality

Temporal Locality

Address
P
o
-

J‘.‘.‘

¢

157000 158000 159000

160000 161000

154000 1565000 156000
Cycle

75000 T
151000 152000 153000

oS0

https://stackoverflow.com/questions/7638932/what-is-locality-of-reference

Core Ideas and Challenges

One line per address. One chance.

A direct mapped cache is like an assigned seat on the plane:

* |f there are empty seats, you must still sit in your assigned one

Good things:

e |t’s energy efficient
 The hardware is simple

 The lookup is super fast

Core Ideas and Challenges

One line per address. One chance.

A direct mapped cache is like an assigned seat on the plane:

* |f there are empty seats, you must still sit in your assigned one

Bad things:

* Conflict misses: if two hot addresses map to the exact same line — thrash city!
* Cache thrashing is a thing:

* You access A — evict B — then, access B — evict A — repeat until sanity is
lost

* |t can lead to trashing even with good locality

Core Ideas and Challenges

Great flexibility, chaotic vibes.

A fully associative cache is like open seating on Southwest Airlines:

e Sit wherever you want

Good thing:

» It leads to significantly fewer cache misses £+

Core Ideas and Challenges

Great flexibility, chaotic vibes.

A fully associative cache is like open seating on Southwest Airlines:

e Sit wherever you want

Bad things:

 The hardware is complex and doesn’t scale to large caches
* The lookup is slower

* The replacement can get complicated

Core Ideas and Challenges

Compromise between direct-mapped and fully associative caches

A set associative cache is like having reserved tables at a restaurant:

* You can sit at any chair at your table, but you still can’t sit anywhere you want

Good things:

* Reduces conflict misses compared to direct-mapped
e |t's less complex and faster than fully associative

* [t’s flexible enough to handle some collisions without being super expensive

Core Ideas and Challenges

Compromise between direct-mapped and fully associative caches

A set associative cache is like having reserved tables at a restaurant:

* You can sit at any chair at your table, but you still can’t sit anywhere you want

Bad things:

* |t’s slightly slower than direct-mapped (must search all ways in a set)
* You need more hardware for comparators than direct-mapped

 Complexity grows as number of ways increases

10

Cache performance

The average access time tavg: The average access time tavg:
tavg = thit + Yomiss * tmiss tavg = thit + Yomiss * tmiss

tavg — 4 -+ 50/0 * 100 tavg — 1 ns + 50/0 * 50 ns

tavg = 9 cycles tavg = 3.5 ns

Three types of cache misses (3 Cs):

 Cold or Compulsory: first access ever to a block
 Capacity: the cache is too small

* Conflict: mapping collision (esp. direct mapped), the associativity is too low

11

The operating system (OS)

12

From Hardware View to System View

Compiled Program

Process

Address Spaces

Operating System

L1$ L12$ Memory
Hardware

Caches

13

If we can run instructions directly on the CPU, why do we
need an operating system?

14

Operating System

The Operating System (OS) acts as an illusionist:
* Any program we run doesn't need to know that the OS or other programs exist

 Any program we run doesn't need to worry about how syscalls actually work

l

A system call is a way for a program to ask the OS to do something on its behalf, like reading a file,
printing to the screen, or creating a new program

15

arating System

s as an Hllusionist:

t need to know that the OS or other programs exist

t need to worry about how syscalls actually work

l

A system call is a way for a program to ask the OS to do something on its behalf, like reading a file,
printing to the screen, or creating a new program

A system call is like pressing a button on a vending machine:

* You (the program) want a snack (like reading a file or printing something)
* You can’t reach inside to grab it yourself (you are in user space, the snack is in kernel space)

SO0 you press a button (make a syscall), and the machine (the OS) delivers the snack to you

. E0E0)

Program's Perspective

From the program's perspective, the following statements are true:
* "| am the only program running on the CPU"
 "There's only one CPU, one memory, etc. on this system"
 "| have a full memory to use however | want"

e "ecalls (e.g., printf, malloc, scanft) just work"

this is not true anymore

17

Operating System

The Operating System (OS) acts as an illusionist:

* Any program we run doesn't need to know that the OS or other programs exist

* Any program we run doesn't need to worry about how syscalls actually work

The Operating System (OS) acts as a conductor:

 Recelve commands from the user and assigns computer resources to tasks

18

Conceptual RISC-V Print “Hello”

Conventionally, $v0 holds the system call number: it tells the OS which service the program is asking for

RISCTassembly pseudo—-code

1 vo, 4 # Load system call code for 'print string’
La ad, msg # Load address of message
syscall # Call to the 0S

msg: .asciiz "Hello!"

* The program is saying: “| want to use system call #4, i.e., print string”
 Opcode for the OS

19

recipe (on paper in the cookbook)

|

process versus program

20

recipe Process versus Program

1

* A program consists of code and data
e |t is specified in some programming language, €.g., C

* |t is typically stored in a file on disk

21

recipe Process versus Program

1

* A program consists of code and data
e |t is specified in some programming language, €.g., C
* |t is typically stored in a file on disk

 “Running a program” means creating a process
 Can run a program multiple times!

* One after the other, or even concurrently

22

From Program to “Executable”

* An executable is a file containing:
 The executable code, i.e. CPU instructions

 Data, I.e. Information manipulated by these instructions

* Obtained by compiling a program and linking with libraries

23

What a Process Really Is

 Program = recipe (passive)

* Process = chef actively cooking (active, doing things, using tools)

* An executable running on an abstraction of a computer:

24

What a Process Really Is

* An executable running on an abstraction of a computer

* A good abstraction (processes abstract away the CPU and registers):
* |s portable and hides implementation details
 Has an intuitive and easy-to-use interface
 Can be instatiated many times

e |s efficient to implement

25

Process # Program

* Program = recipe () = code + data

* Process = chef actively cooking (active, doing things, using tools) = mutable data, files

 The same program can be run multiple times simultaneously, e.g., 1 program,

2 Processes

> . /P rogram & many processes can originate from the same program, just as many people
S /p I"Og ram & can independently cook the same recipe

. @0

From Hardware View to System View

‘Compiled Program 1

Compiled Program 2

l

Process 1

[T [Accrss Spaces][Fies_][Sockets

Operating System

Process 2

Tveads [cress paces]]_Fies] sockets

Hardware

27

From Hardware View to System View

‘Compiled Program 1

Compiled Program 2

Process 1 Process 2

Tveacs e Spaces]| Fies || Sockts

Operating System

Hardware

28

From Hardware View to System View

‘Compiled Program 1

Compiled Program 2

l l

Process 1 Process 2

[T [accress pces]|_es | sockes]|__[vt Jaress Spaces] s Sockes

Operating System

Hardware

29

Operating System

The Operating System (OS) acts as an illusionist:

* Any program we run doesn't need to know that the OS or other programs exist

 Any program we run doesn't need to worry about how syscalls actually work

The Operating System (OS) acts as a conductor:

 Receive commands from the user and assigns computer resources to tasks

The Operating System (OS) acts as a referee:

 Keep track of what processes are running, and assign appropriate permissions

0 @0

Day In the life of a process

31

A Day In the Life of a Process

The source file: sum. C

#include <stdio.h>
int max = 10;
int main () {

int sum = 0;

add(max, &sum);
printf(“%d”, sum);

program

0040 0000
-

e
P
D

=

©
&

1020 0000/-,
£ max
<

32

0C40023C
21035000
1b80050c
8C048004
21047002
0C400020
19201000
21040330
22500102

-==» Process is alive: process id p1d XXX

Stack

sp —» "'
)

Heap

Data

ext

Environment

 CPU, registers, memory allow you to implement algorithms
e Ok, but how do you:

 Read input/write to screen?

* Create/read/write/delete files?

 Create new processes?

* Receive/send network packet?

e Get the time/set alarm?

 Terminate the current process?

33

A Process Physically Runs on the CPU

 But somehow each process has its own:

* Registers
« Memory

e |/O resources

* Even though there are usually more proceses than the CPU cores

 The need to multiplex, schedule, to create virtual CPUs for each process

 For now, assume we have a single core CPU

y @0

Process Control Block (PCB)

* For each process, the OS has a PCB containing:

» Process ID p1id

* Process State, e.g., running, waiting, ready
e Process User uid

» Memory Management Information

e Scheduling Information

» Parent Process ID ppid

e ...and more!

35

Process Life Cycle

INIT

RUNNING WAITING

TERMINATED

36

Context Switching

The process by which an OS saves the state of a currently running process and
restores the state of another process

37

Context Switching

The process by which an OS saves the state of a currently running process and
restores the state of another process

CPU

Process P1 Process P2
Interrupt or system call

» First, save the current process state Erecuting |

* Update the Process Control Block (PCB) :

* Then, select the next process Interrupt or system call " | prcuuna
* Restore the next process state =

* Resume execution e

Executing l‘

33

Performance Consideration

Overhead
* Context switching involves overhead because saving and restoring process

states takes time

* The goal is to minimize this overhead to maintain system performance
* Context switching has to be efficient for the smooth operation of a

multitasking system

39

this is where the core of the operating systems (the kernel) runs

|

User space versus Kernel space

40

User Space versus Kernel Space

 User space is where programs (apps, compilers, browsers, your code, etc.) run
* User space applications cannot directly access the system’s hardware resources

* |t is restricted and isolated from the kernel space to ensure system stability and
security

 Kernel space is where the core of the operating system (the kernel) runs
* |t has full access to hardware (e.g., CPU, memory, disks, devices)

 Responsible for: scheduling processes, managing memory, handling |/O,
enforcing security and isolation

41

How They Interact

User programs cannot just “walk” into kernel space: yhey have to ask for help through
a system call

RISC assembly pseudo-code

i1 vo, 4 # Load system call code for 'print string’: 1n user space
la a0, msg # Load the address of the message: 1n user space
syscall # Trap to the 0S: switch from user space to kernel space

The 0S examines v@ (to know which service you’re
requesting) and a® (the argument)

msg: .asciiz “Hello!"™ # Data stored in user space

42

Memory Layout 32-Bit Kernel

XFFFFFFFF

1 GB — —P these addresses are unavailable in user mode

cooo0000 this |S @ software convention

Stack
Automatic variables (local to a function's scope), caller’s return address, etc.
(grows towards lower memory addresses)

1t Heap 1
3 GB — Dynamic memory allocation through malloc/new free/delete
(grows towards higher memory addresses)

In a 32-bit system, the total addressable memory is 4 GB:

* The division of memory into 1 GB for kernel space and 3

GEB for user space is a common configuration

Text . :
Binary image of the process (e.g. /bin/1s) 0 08048000 |t allows the OS to manage memory efficiently while

0x00000000 providing ample space for user applications

43

128TiB

128TiB

Memory Layout 64-Bit Kernel

OxFFFFFFFFFFFFFFFF
Kernel
64 TiB Addresses
Physical
OxFFFF800000000000
“Canonical Hole" Empty
Space
Ox00007FFFFFFFFFFF
0x0000000000000000

64-Bit Virtual Address Space

In a 64-bit system, the total memory is 16 exabytes:

e Current CPUs don’t use all 64 bits of address lines

The available address space is split into 2 halves separated

by a very big hole called

The purpose of the
* It helps In detecting invalid memory accesses

* [t enhances security and stabillity

44

System Calls

45

System Calls

* A process runs on a CPU
» (Can access the Operating System (OS) kernel through “system calls”

* A way for the user-space application to request services from the kernel

46

Why a “Skinny” Interface?

o Portability
e |t’s easler to Implement and maintain

e Security

e It's a “small attack surface”: easier to protect against vulnerabilities

[t’s not just the OS interface; the Internet “IP” later is another good example of a
skinny interface

v oS0

Common System Calls

read(): Reads data from a file descriptor

write(): Writes data to a file descriptor

open(): Opens a file and returns a file descriptor

close(): Closes an open file descriptor

fork(): Creates a new process

exec (): Replaces the current process image with a new process image

waltpid(): Waits for a specific child process to change state

48

Error Handling

 The system calls often return =1 to indicate an error
 The global variable errno is set to indicate the specific error code
 The perror() function can be used to print a human-readable error

message based on the value of errno

49

Fork, Exec, and Waitpid

50

Ex: fork()

fork() is used to create a new process by duplicating the calling process
* The new process is called the child process

* The original process is called the parent process

fork() function prototype:
pid t fork(pid t pid);

fork() is called, then both processes continue executing the code after the

fork() call, but they have different PIDs

51

fork () Return Value

 fork() function prototype:
pid t fork(pid t pid);

Process Return value of fork()

paent otthechid
oha o
oo

e |f fork() fails, it returns —1 in the parent and no child is created

52

Ex: fork()

#include <stdio.h>

#include <unistd.h>

int main() {
pid t pid = fork();
1f (pid == 0) {

printf("Hello from the child process!\n");
} else if (pid > 0) {

printf("Hello from the parent process!\n");
} else {

perror("fork");

}

return 0;

53

Ex: fork()

#include <stdio.h>

#include <unistd.h>

int main() {
pid t pid = fork();
1f (pid == 0) {

printf("Hello from the child process!\n");
} else if (pid > 0) {

printf("Hello from the parent process!\n");
} else {

perror("fork");

}

return 0;

54

Why fork () Would Fail?

e Common fork () failure reasons:

 The system lacks enough memory to allocate for the new process
 The system’s process limit has been reached

 The process lacks the necessary permissions to create a new process
* Other resource limits are exceeded, e.g. CPU time limit

* Or even kernel-level issues, e.g., a bug

55

Ex: exec()

o exec|() replaces the current process image with a new process image

« Commonly used functions: execl (), execp(), execv(), etc.

e exec() function prototype:

int execl(const char xpath, const char xarg, ...);

e exec () basically changes what a process does

56

Ex: exec()

#include <stdio.h>
#include <unistd.h>

int main() {
printf("Before exec\n");
execl("/bin/1s", "1s", NULL);
perror("execl");
return 0;

o57

Ex: waitpid()
e waltpid() is used to wait for state changes in a child process

e |t can be used to walit for a specific child process to terminate

e waltpid() function prototype:

pid_t waitpid(pid_t pid, int *status, int options);

58

Ex: waitpid()
e waltpid() is used to wait for state changes in a child process

e |t can be used to walit for a specific child process to terminate

e waltpid() function prototype:

pid_t waitpid(pid_t pid, int *status, int options);

59

Ex: waitpid()

#include <stdio.h>
#include <unistd.h>

#include <sys/wait.h>

int main() {
pid_t pid = fork();

if (pid == 0) {

execlp("ls", "1s", "-1", NULL):
perror("execlp failed");
} else {

int status;
waitpid(pid, &status, 0);
printf("Child exited with %d\n", WEXITSTATUS(status));

60

How Processes Are Created?

e fork():
* |t allocates the process ID pid
* Create and initialize PCB
 Create and initialize a new address space

 Then, inform the scheduler a new process is ready to run

o1

How Processes Are Terminated?

 The system calls for termination are:
« ex1t(): used by a process to terminate itself
 abort(): used by a parent process to terminate a child process

 walt() and waitpid(): used by a parent process to wait for the
termination of a child process and retrieve its exit status

62

Brief Summary

A process iIs an abstraction of a computer

A process Is not a program

A context captures the state of the processor

The implementation uses two spaces: user space and kernel space

A Process Control Block (PCB) is a kernel data structure that saves context

and has other information about the process

03

