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Plan for Today

• Review of caches
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• A new topic: processes



Review of caches
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Locality in a Nutshell

4https://stackoverflow.com/questions/7638932/what-is-locality-of-reference

Locality is not just about how often a variable appears, but about how the value is reused 
over time or space relative to the rest of the program
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Core Ideas and Challenges
One line per address. One chance.

A direct mapped cache is like an assigned seat on the plane:

• If there are empty seats, you must still sit in your assigned one

Good things:

• It’s energy efficient

• The hardware is simple

• The lookup is super fast
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Core Ideas and Challenges
One line per address. One chance.

A direct mapped cache is like an assigned seat on the plane:

• If there are empty seats, you must still sit in your assigned one

Bad things:

• Conflict misses: if two hot addresses map to the exact same line → thrash city!

• Cache thrashing is a thing:

• You access A → evict B → then, access B → evict A → repeat until sanity is 

lost
• It can lead to trashing even with good locality
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Core Ideas and Challenges
Great flexibility, chaotic vibes.

Good thing:

• It leads to significantly fewer cache misses 🎉

A fully associative cache is like open seating on Southwest Airlines:

• Sit wherever you want
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Core Ideas and Challenges

A fully associative cache is like open seating on Southwest Airlines:

• Sit wherever you want

Bad things:

• The hardware is complex and doesn’t scale to large caches

• The lookup is slower

• The replacement can get complicated

Great flexibility, chaotic vibes.
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Core Ideas and Challenges
Compromise between direct-mapped and fully associative caches

A set associative cache is like having reserved tables at a restaurant:

• You can sit at any chair at your table, but you still can’t sit anywhere you want

Good things:

• Reduces conflict misses compared to direct-mapped

• It’s less complex and faster than fully associative

• It’s flexible enough to handle some collisions without being super expensive
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Core Ideas and Challenges

Bad things:

• It’s slightly slower than direct-mapped (must search all ways in a set)

• You need more hardware for comparators than direct-mapped

• Complexity grows as number of ways increases

Compromise between direct-mapped and fully associative caches

A set associative cache is like having reserved tables at a restaurant:

• You can sit at any chair at your table, but you still can’t sit anywhere you want
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Cache performance
The average access time tavg:

tavg = thit + %miss * tmiss 

tavg = 4 + 5% * 100
tavg = 9 cycles

Three types of cache misses (3 Cs):

• Cold or Compulsory: first access ever to a block

• Capacity: the cache is too small

• Conflict: mapping collision (esp. direct mapped), the associativity is too low

The average access time tavg:

tavg = thit + %miss * tmiss 

tavg = 1 ns + 5% * 50 ns
tavg = 3.5 ns



The operating system (OS)
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From Hardware View to System View
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Caches



If we can run instructions directly on the CPU, why do we 
need an operating system?
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(a) how do multiple programs share CPU and memory without stepping on each other?

(b) how does the OS decide which process gets cache, memory, or I/O?



Operating System
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The Operating System (OS) acts as an illusionist:


• Any program we run doesn't need to know that the OS or other programs exist 

• Any program we run doesn't need to worry about how syscalls actually work

A system call is a way for a program to ask the OS to do something on its behalf, like reading a file, 
printing to the screen, or creating a new program



Operating System
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The Operating System (OS) acts as an illusionist:


• Any program we run doesn't need to know that the OS or other programs exist 

• Any program we run doesn't need to worry about how syscalls actually work

A system call is a way for a program to ask the OS to do something on its behalf, like reading a file, 
printing to the screen, or creating a new program

A system call is like pressing a button on a vending machine:

• You (the program) want a snack (like reading a file or printing something)

• You can’t reach inside to grab it yourself (you are in user space, the snack is in kernel space)

• So you press a button (make a syscall), and the machine (the OS) delivers the snack to you



Program's Perspective
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• "I am the only program running on the CPU"

• "There's only one CPU, one memory, etc. on this system"

• "I have a full memory to use however I want"

• "ecalls (e.g., printf, malloc, scanf) just work"

From the program's perspective, the following statements are true:

this is not true anymore



Operating System
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The Operating System (OS) acts as an illusionist:


• Any program we run doesn't need to know that the OS or other programs exist 

• Any program we run doesn't need to worry about how syscalls actually work

The Operating System (OS) acts as a conductor:


• Receive commands from the user and assigns computer resources to tasks



Conceptual RISC-V Print “Hello”
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# RISC assembly pseudo-code 
li   v0, 4          # Load system call code for 'print string' 
la   a0, msg        # Load address of message 
syscall             # Call to the OS 
... 
msg: .asciiz "Hello!"

Conventionally, $v0 holds the system call number: it tells the OS which service the program is asking for

• The program is saying: “I want to use system call #4, i.e., print string”

• Opcode for the OS
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recipe (on paper in the cookbook)

person actively cooking from that recipe (ingredients, tools, stove all in use)

process versus program



Process versus Program
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• A program consists of code and data


• It is specified in some programming language, e.g., C


• It is typically stored in a file on disk


recipe



Process versus Program
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• A program consists of code and data


• It is specified in some programming language, e.g., C


• It is typically stored in a file on disk


• “Running a program” means creating a process 

• Can run a program multiple times! 

• One after the other, or even concurrently 

recipe

person actively cooking from that recipe (ingredients, tools, stove all in use)



From Program to “Executable”
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• An executable is a file containing:


• The executable code, i.e. CPU instructions 


• Data, i.e. information manipulated by these instructions


• Obtained by compiling a program and linking with libraries 



What a Process Really Is

24

• An executable running on an abstraction of a computer:
The address space (memory) + execution or CPU context (e.g., register, program counter, stack pointer)

(a) Controlled by machine code (instructions)

The enviroment (e.g., files, devices)
(b) Controlled by syscalls

• Program = recipe (passive)


• Process = chef actively cooking (active, doing things, using tools)



What a Process Really Is
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• An executable running on an abstraction of a computer

• A good abstraction (processes abstract away the CPU and registers):


• Is portable and hides implementation details


• Has an intuitive and easy-to-use interface


• Can be instatiated many times


• Is efficient to implement

(a) The address space (memory) + execution context (e.g., register)
(b) The enviroment (files, etc.)



Process ≠ Program
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• The same program can be run multiple times simultaneously, e.g., 1 program, 
2 processes

> ./program & 
> ./program &

• Program = recipe (passive) = code + data


• Process = chef actively cooking (active, doing things, using tools) = mutable data, files

many processes can originate from the same program, just as many people 
can independently cook the same recipe



From Hardware View to System View
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From Hardware View to System View
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From Hardware View to System View
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Operating System
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The Operating System (OS) acts as an illusionist:


• Any program we run doesn't need to know that the OS or other programs exist


• Any program we run doesn't need to worry about how syscalls actually work

The Operating System (OS) acts as a conductor:


• Receive commands from the user and assigns computer resources to tasks

The Operating System (OS) acts as a referee:


• Keep track of what processes are running, and assign appropriate permissions



Day in the life of a process
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A Day in the Life of a Process
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The source file: sum.c

program

The executable: sum Process is alive: process id pid xxx

Stack

Heap

Data

Text

sp



Environment
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• CPU, registers, memory allow you to implement algorithms 

• Ok, but how do you:

• Read input/write to screen?

• Create/read/write/delete files?

• Create new processes?

• Receive/send network packet?

• Get the time/set alarm?

• Terminate the current process?



A Process Physically Runs on the CPU
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• But somehow each process has its own:

• Registers

• Memory

• I/O resources

• Even though there are usually more proceses than the CPU cores

• The need to multiplex, schedule, to create virtual CPUs for each process

• For now, assume we have a single core CPU



Process Control Block (PCB)
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• For each process, the OS has a PCB containing:

• Process ID pid

• Process State, e.g., running, waiting, ready

• Process User uid

• Memory Management Information

• …and more!

• Scheduling Information

• Parent Process ID ppid



Process Life Cycle
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READY

RUNNING WAITING

TERMINATED

INIT



Context Switching
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The process by which an OS saves the state of a currently running process and 
restores the state of another process



Context Switching
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The process by which an OS saves the state of a currently running process and 
restores the state of another process

• First, save the current process state
• Update the Process Control Block (PCB)
• Then, select the next process
• Restore the next process state
• Resume execution



Performance Consideration
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Overhead

• Context switching involves overhead because saving and restoring process 

states takes time

• The goal is to minimize this overhead to maintain system performance

• Context switching has to be efficient for the smooth operation of a 

multitasking system



User space versus Kernel space
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this is where the core of the operating systems (the kernel) runs 

this is where regular programs live (apps, compilers, browsers, your code, etc.) 



User Space versus Kernel Space
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• User space is where programs (apps, compilers, browsers, your code, etc.) run

• User space applications cannot directly access the system’s hardware resources

• It is restricted and isolated from the kernel space to ensure system stability and 
security

• Kernel space is where the core of the operating system (the kernel) runs

• It has full access to hardware (e.g., CPU, memory, disks, devices)

• Responsible for: scheduling processes, managing memory, handling I/O, 
enforcing security and isolation



How They Interact
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User programs cannot just “walk” into kernel space: yhey have to ask for help through 
a system call

# RISC assembly pseudo-code 
li   v0, 4            # Load system call code for 'print string’: in user space 
la   a0, msg          # Load the address of the message: in user space 
syscall               # Trap to the OS: switch from user space to kernel space 
...                   # The OS examines v0 (to know which service you’re 
requesting) and a0 (the argument) 

     
msg: .asciiz “Hello!" # Data stored in user space



Memory Layout 32-Bit Kernel
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In a 32-bit system, the total addressable memory is 4 GB:


• The division of memory into 1 GB for kernel space and 3 

GB for user space is a common configuration


• It allows the OS to manage memory efficiently while 
providing ample space for user applications

these addresses are unavailable in user mode
this is a software convention 



Memory Layout 64-Bit Kernel
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In a 64-bit system, the total memory is 16 exabytes:


• Current CPUs don’t use all 64 bits of address lines

The purpose of the canonical hole: 


• It helps in detecting invalid memory accesses


• It enhances security and stability

The available address space is split into 2 halves separated 

by a very big hole called “canonical hole”



System Calls

45



System Calls
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• A process runs on a CPU

• Can access the Operating System (OS) kernel through “system calls”

• A way for the user-space application to request services from the kernel



Why a “Skinny” Interface?
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• Portability

• Security

• It’s easier to implement and maintain

• It’s a “small attack surface”: easier to protect against vulnerabilities

It’s not just the OS interface; the Internet “IP” later is another good example of a 
skinny interface



Common System Calls
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• read(): Reads data from a file descriptor


• write(): Writes data to a file descriptor


• open(): Opens a file and returns a file descriptor


• close(): Closes an open file descriptor


• fork(): Creates a new process


• exec(): Replaces the current process image with a new process image


• waitpid(): Waits for a specific child process to change state



Error Handling
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• The system calls often return -1 to indicate an error


• The global variable errno is set to indicate the specific error code


• The perror() function can be used to print a human-readable error 

message based on the value of errno




Fork, Exec, and Waitpid
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Ex: fork()
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• fork() function prototype:

pid_t fork(pid_t pid);

• fork() is used to create a new process by duplicating the calling process

• The new process is called the child process

• The original process is called the parent process

• fork() is called, then both processes continue executing the code after the 

fork() call, but they have different PIDs



fork() Return Value
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• fork() function prototype:

pid_t fork(pid_t pid);

Process Return value of fork()

Parent PID of the child

Child 0

Error -1

• If fork() fails, it returns -1 in the parent and no child is created



Ex: fork()
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#include <stdio.h> 
#include <unistd.h> 

int main() { 
    pid_t pid = fork(); 
    if (pid == 0) { 
        // child process 
        printf("Hello from the child process!\n"); 
    } else if (pid > 0) { 
        // parent process 
        printf("Hello from the parent process!\n"); 
    } else { 
        // fork failed 
        perror("fork"); 
    } 
    return 0; 
}



Ex: fork()
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#include <stdio.h> 
#include <unistd.h> 

int main() { 
    pid_t pid = fork(); 
    if (pid == 0) { 
        // child process 
        printf("Hello from the child process!\n"); 
    } else if (pid > 0) { 
        // parent process 
        printf("Hello from the parent process!\n"); 
    } else { 
        // fork failed 
        perror("fork"); 
    } 
    return 0; 
}



Why fork() Would Fail?
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• Common fork() failure reasons:

• The system lacks enough memory to allocate for the new process

• The system’s process limit has been reached

• The process lacks the necessary permissions to create a new process

• Other resource limits are exceeded, e.g. CPU time limit

• Or even kernel-level issues, e.g., a bug



Ex: exec()
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• exec() replaces the current process image with a new process image

• Commonly used functions: execl(), execp(), execv(), etc.

• exec() function prototype:

int execl(const char *path, const char *arg, ...);

• exec() basically changes what a process does



Ex: exec()
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#include <stdio.h> 
#include <unistd.h> 

int main() { 
    printf("Before exec\n"); 
    execl("/bin/ls", "ls", NULL); 
    perror("execl"); // this will only be executed if exec fails 
    return 0; 
}



Ex: waitpid()
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• waitpid() is used to wait for state changes in a child process
• It can be used to wait for a specific child process to terminate

• waitpid() function prototype:

pid_t waitpid(pid_t pid, int *status, int options);



Ex: waitpid()
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• waitpid() is used to wait for state changes in a child process
• It can be used to wait for a specific child process to terminate

• waitpid() function prototype:

pid_t waitpid(pid_t pid, int *status, int options);



Ex: waitpid()
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#include <stdio.h> 
#include <unistd.h> 
#include <sys/wait.h> 

int main() { 
    pid_t pid = fork(); 

    if (pid == 0) { 
        // child runs "ls -l" 
        execlp("ls", "ls", "-l", NULL); 
        perror("execlp failed"); 
    } else { 
        // parent waits 
        int status; 
        waitpid(pid, &status, 0); 
        printf("Child exited with %d\n", WEXITSTATUS(status)); 
    } 
}



How Processes Are Created?
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• fork():

• It allocates the process ID pid
• Create and initialize PCB

• Create and initialize a new address space

• Then, inform the scheduler a new process is ready to run



How Processes Are Terminated?
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• The system calls for termination are:

• exit(): used by a process to terminate itself
• abort(): used by a parent process to terminate a child process
• wait() and waitpid(): used by a parent process to wait for the 

termination of a child process and retrieve its exit status



Brief Summary
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• A process is an abstraction of a computer


• A process is not a program


• A context captures the state of the processor


• The implementation uses two spaces: user space and kernel space


• A Process Control Block (PCB) is a kernel data structure that saves context 
and has other information about the process


