
CS3410: Computer Systems and Organization
LEC18: Processes

Professor Giulia Guidi

Wednesday, October 29, 2025

1

Credits: Bala, Bracy, Garcia, Guidi, Kao, Sampson, Sirer, Weatherspoon

Plan for Today

• Review of caches

2

• A new topic: processes

Review of caches

3

Locality in a Nutshell

4https://stackoverflow.com/questions/7638932/what-is-locality-of-reference

Locality is not just about how often a variable appears, but about how the value is reused
over time or space relative to the rest of the program

5

Core Ideas and Challenges
One line per address. One chance.

A direct mapped cache is like an assigned seat on the plane:

• If there are empty seats, you must still sit in your assigned one

Good things:

• It’s energy efficient

• The hardware is simple

• The lookup is super fast

6

Core Ideas and Challenges
One line per address. One chance.

A direct mapped cache is like an assigned seat on the plane:

• If there are empty seats, you must still sit in your assigned one

Bad things:

• Conflict misses: if two hot addresses map to the exact same line → thrash city!

• Cache thrashing is a thing:

• You access A → evict B → then, access B → evict A → repeat until sanity is

lost
• It can lead to trashing even with good locality

7

Core Ideas and Challenges
Great flexibility, chaotic vibes.

Good thing:

• It leads to significantly fewer cache misses 🎉

A fully associative cache is like open seating on Southwest Airlines:

• Sit wherever you want

8

Core Ideas and Challenges

A fully associative cache is like open seating on Southwest Airlines:

• Sit wherever you want

Bad things:

• The hardware is complex and doesn’t scale to large caches

• The lookup is slower

• The replacement can get complicated

Great flexibility, chaotic vibes.

9

Core Ideas and Challenges
Compromise between direct-mapped and fully associative caches

A set associative cache is like having reserved tables at a restaurant:

• You can sit at any chair at your table, but you still can’t sit anywhere you want

Good things:

• Reduces conflict misses compared to direct-mapped

• It’s less complex and faster than fully associative

• It’s flexible enough to handle some collisions without being super expensive

10

Core Ideas and Challenges

Bad things:

• It’s slightly slower than direct-mapped (must search all ways in a set)

• You need more hardware for comparators than direct-mapped

• Complexity grows as number of ways increases

Compromise between direct-mapped and fully associative caches

A set associative cache is like having reserved tables at a restaurant:

• You can sit at any chair at your table, but you still can’t sit anywhere you want

11

Cache performance
The average access time tavg:

tavg = thit + %miss * tmiss

tavg = 4 + 5% * 100
tavg = 9 cycles

Three types of cache misses (3 Cs):

• Cold or Compulsory: first access ever to a block

• Capacity: the cache is too small

• Conflict: mapping collision (esp. direct mapped), the associativity is too low

The average access time tavg:

tavg = thit + %miss * tmiss

tavg = 1 ns + 5% * 50 ns
tavg = 3.5 ns

The operating system (OS)

12

From Hardware View to System View

13

Caches

If we can run instructions directly on the CPU, why do we
need an operating system?

14

(a) how do multiple programs share CPU and memory without stepping on each other?

(b) how does the OS decide which process gets cache, memory, or I/O?

Operating System

15

The Operating System (OS) acts as an illusionist:

• Any program we run doesn't need to know that the OS or other programs exist

• Any program we run doesn't need to worry about how syscalls actually work

A system call is a way for a program to ask the OS to do something on its behalf, like reading a file,
printing to the screen, or creating a new program

Operating System

16

The Operating System (OS) acts as an illusionist:

• Any program we run doesn't need to know that the OS or other programs exist

• Any program we run doesn't need to worry about how syscalls actually work

A system call is a way for a program to ask the OS to do something on its behalf, like reading a file,
printing to the screen, or creating a new program

A system call is like pressing a button on a vending machine:

• You (the program) want a snack (like reading a file or printing something)

• You can’t reach inside to grab it yourself (you are in user space, the snack is in kernel space)

• So you press a button (make a syscall), and the machine (the OS) delivers the snack to you

Program's Perspective

17

• "I am the only program running on the CPU"

• "There's only one CPU, one memory, etc. on this system"

• "I have a full memory to use however I want"

• "ecalls (e.g., printf, malloc, scanf) just work"

From the program's perspective, the following statements are true:

this is not true anymore

Operating System

18

The Operating System (OS) acts as an illusionist:

• Any program we run doesn't need to know that the OS or other programs exist

• Any program we run doesn't need to worry about how syscalls actually work

The Operating System (OS) acts as a conductor:

• Receive commands from the user and assigns computer resources to tasks

Conceptual RISC-V Print “Hello”

19

RISC assembly pseudo-code
li v0, 4 # Load system call code for 'print string'
la a0, msg # Load address of message
syscall # Call to the OS
...
msg: .asciiz "Hello!"

Conventionally, $v0 holds the system call number: it tells the OS which service the program is asking for

• The program is saying: “I want to use system call #4, i.e., print string”

• Opcode for the OS

20

recipe (on paper in the cookbook)

person actively cooking from that recipe (ingredients, tools, stove all in use)

process versus program

Process versus Program

21

• A program consists of code and data

• It is specified in some programming language, e.g., C

• It is typically stored in a file on disk

recipe

Process versus Program

22

• A program consists of code and data

• It is specified in some programming language, e.g., C

• It is typically stored in a file on disk

• “Running a program” means creating a process

• Can run a program multiple times!

• One after the other, or even concurrently

recipe

person actively cooking from that recipe (ingredients, tools, stove all in use)

From Program to “Executable”

23

• An executable is a file containing:

• The executable code, i.e. CPU instructions

• Data, i.e. information manipulated by these instructions

• Obtained by compiling a program and linking with libraries

What a Process Really Is

24

• An executable running on an abstraction of a computer:
The address space (memory) + execution or CPU context (e.g., register, program counter, stack pointer)

(a) Controlled by machine code (instructions)

The enviroment (e.g., files, devices)
(b) Controlled by syscalls

• Program = recipe (passive)

• Process = chef actively cooking (active, doing things, using tools)

What a Process Really Is

25

• An executable running on an abstraction of a computer

• A good abstraction (processes abstract away the CPU and registers):

• Is portable and hides implementation details

• Has an intuitive and easy-to-use interface

• Can be instatiated many times

• Is efficient to implement

(a) The address space (memory) + execution context (e.g., register)
(b) The enviroment (files, etc.)

Process ≠ Program

26

• The same program can be run multiple times simultaneously, e.g., 1 program,
2 processes

> ./program &
> ./program &

• Program = recipe (passive) = code + data

• Process = chef actively cooking (active, doing things, using tools) = mutable data, files

many processes can originate from the same program, just as many people
can independently cook the same recipe

From Hardware View to System View

27

From Hardware View to System View

28

From Hardware View to System View

29

Operating System

30

The Operating System (OS) acts as an illusionist:

• Any program we run doesn't need to know that the OS or other programs exist

• Any program we run doesn't need to worry about how syscalls actually work

The Operating System (OS) acts as a conductor:

• Receive commands from the user and assigns computer resources to tasks

The Operating System (OS) acts as a referee:

• Keep track of what processes are running, and assign appropriate permissions

Day in the life of a process

31

A Day in the Life of a Process

32

The source file: sum.c

program

The executable: sum Process is alive: process id pid xxx

Stack

Heap

Data

Text

sp

Environment

33

• CPU, registers, memory allow you to implement algorithms

• Ok, but how do you:

• Read input/write to screen?

• Create/read/write/delete files?

• Create new processes?

• Receive/send network packet?

• Get the time/set alarm?

• Terminate the current process?

A Process Physically Runs on the CPU

34

• But somehow each process has its own:

• Registers

• Memory

• I/O resources

• Even though there are usually more proceses than the CPU cores

• The need to multiplex, schedule, to create virtual CPUs for each process

• For now, assume we have a single core CPU

Process Control Block (PCB)

35

• For each process, the OS has a PCB containing:

• Process ID pid

• Process State, e.g., running, waiting, ready

• Process User uid

• Memory Management Information

• …and more!

• Scheduling Information

• Parent Process ID ppid

Process Life Cycle

36

READY

RUNNING WAITING

TERMINATED

INIT

Context Switching

37

The process by which an OS saves the state of a currently running process and
restores the state of another process

Context Switching

38

The process by which an OS saves the state of a currently running process and
restores the state of another process

• First, save the current process state
• Update the Process Control Block (PCB)
• Then, select the next process
• Restore the next process state
• Resume execution

Performance Consideration

39

Overhead

• Context switching involves overhead because saving and restoring process

states takes time

• The goal is to minimize this overhead to maintain system performance

• Context switching has to be efficient for the smooth operation of a

multitasking system

User space versus Kernel space

40

this is where the core of the operating systems (the kernel) runs

this is where regular programs live (apps, compilers, browsers, your code, etc.)

User Space versus Kernel Space

41

• User space is where programs (apps, compilers, browsers, your code, etc.) run

• User space applications cannot directly access the system’s hardware resources

• It is restricted and isolated from the kernel space to ensure system stability and
security

• Kernel space is where the core of the operating system (the kernel) runs

• It has full access to hardware (e.g., CPU, memory, disks, devices)

• Responsible for: scheduling processes, managing memory, handling I/O,
enforcing security and isolation

How They Interact

42

User programs cannot just “walk” into kernel space: yhey have to ask for help through
a system call

RISC assembly pseudo-code
li v0, 4 # Load system call code for 'print string’: in user space
la a0, msg # Load the address of the message: in user space
syscall # Trap to the OS: switch from user space to kernel space
... # The OS examines v0 (to know which service you’re
requesting) and a0 (the argument)

msg: .asciiz “Hello!" # Data stored in user space

Memory Layout 32-Bit Kernel

43

In a 32-bit system, the total addressable memory is 4 GB:

• The division of memory into 1 GB for kernel space and 3

GB for user space is a common configuration

• It allows the OS to manage memory efficiently while
providing ample space for user applications

these addresses are unavailable in user mode
this is a software convention

Memory Layout 64-Bit Kernel

44

In a 64-bit system, the total memory is 16 exabytes:

• Current CPUs don’t use all 64 bits of address lines

The purpose of the canonical hole:

• It helps in detecting invalid memory accesses

• It enhances security and stability

The available address space is split into 2 halves separated

by a very big hole called “canonical hole”

System Calls

45

System Calls

46

• A process runs on a CPU

• Can access the Operating System (OS) kernel through “system calls”

• A way for the user-space application to request services from the kernel

Why a “Skinny” Interface?

47

• Portability

• Security

• It’s easier to implement and maintain

• It’s a “small attack surface”: easier to protect against vulnerabilities

It’s not just the OS interface; the Internet “IP” later is another good example of a
skinny interface

Common System Calls

48

• read(): Reads data from a file descriptor

• write(): Writes data to a file descriptor

• open(): Opens a file and returns a file descriptor

• close(): Closes an open file descriptor

• fork(): Creates a new process

• exec(): Replaces the current process image with a new process image

• waitpid(): Waits for a specific child process to change state

Error Handling

49

• The system calls often return -1 to indicate an error

• The global variable errno is set to indicate the specific error code

• The perror() function can be used to print a human-readable error

message based on the value of errno

Fork, Exec, and Waitpid

50

Ex: fork()

51

• fork() function prototype:

pid_t fork(pid_t pid);

• fork() is used to create a new process by duplicating the calling process

• The new process is called the child process

• The original process is called the parent process

• fork() is called, then both processes continue executing the code after the

fork() call, but they have different PIDs

fork() Return Value

52

• fork() function prototype:

pid_t fork(pid_t pid);

Process Return value of fork()

Parent PID of the child

Child 0

Error -1

• If fork() fails, it returns -1 in the parent and no child is created

Ex: fork()

53

#include <stdio.h>
#include <unistd.h>

int main() {
 pid_t pid = fork();
 if (pid == 0) {
 // child process
 printf("Hello from the child process!\n");
 } else if (pid > 0) {
 // parent process
 printf("Hello from the parent process!\n");
 } else {
 // fork failed
 perror("fork");
 }
 return 0;
}

Ex: fork()

54

#include <stdio.h>
#include <unistd.h>

int main() {
 pid_t pid = fork();
 if (pid == 0) {
 // child process
 printf("Hello from the child process!\n");
 } else if (pid > 0) {
 // parent process
 printf("Hello from the parent process!\n");
 } else {
 // fork failed
 perror("fork");
 }
 return 0;
}

Why fork() Would Fail?

55

• Common fork() failure reasons:

• The system lacks enough memory to allocate for the new process

• The system’s process limit has been reached

• The process lacks the necessary permissions to create a new process

• Other resource limits are exceeded, e.g. CPU time limit

• Or even kernel-level issues, e.g., a bug

Ex: exec()

56

• exec() replaces the current process image with a new process image

• Commonly used functions: execl(), execp(), execv(), etc.

• exec() function prototype:

int execl(const char *path, const char *arg, ...);

• exec() basically changes what a process does

Ex: exec()

57

#include <stdio.h>
#include <unistd.h>

int main() {
 printf("Before exec\n");
 execl("/bin/ls", "ls", NULL);
 perror("execl"); // this will only be executed if exec fails
 return 0;
}

Ex: waitpid()

58

• waitpid() is used to wait for state changes in a child process
• It can be used to wait for a specific child process to terminate

• waitpid() function prototype:

pid_t waitpid(pid_t pid, int *status, int options);

Ex: waitpid()

59

• waitpid() is used to wait for state changes in a child process
• It can be used to wait for a specific child process to terminate

• waitpid() function prototype:

pid_t waitpid(pid_t pid, int *status, int options);

Ex: waitpid()

60

#include <stdio.h>
#include <unistd.h>
#include <sys/wait.h>

int main() {
 pid_t pid = fork();

 if (pid == 0) {
 // child runs "ls -l"
 execlp("ls", "ls", "-l", NULL);
 perror("execlp failed");
 } else {
 // parent waits
 int status;
 waitpid(pid, &status, 0);
 printf("Child exited with %d\n", WEXITSTATUS(status));
 }
}

How Processes Are Created?

61

• fork():

• It allocates the process ID pid
• Create and initialize PCB

• Create and initialize a new address space

• Then, inform the scheduler a new process is ready to run

How Processes Are Terminated?

62

• The system calls for termination are:

• exit(): used by a process to terminate itself
• abort(): used by a parent process to terminate a child process
• wait() and waitpid(): used by a parent process to wait for the

termination of a child process and retrieve its exit status

Brief Summary

63

• A process is an abstraction of a computer

• A process is not a program

• A context captures the state of the processor

• The implementation uses two spaces: user space and kernel space

• A Process Control Block (PCB) is a kernel data structure that saves context
and has other information about the process

