You must be logged in PollEv to get credit

Participation
The “participation” segment of your grade has three main components:

e 4% for Lecture attendance, as measured by occasional Poll Everywhere polls. Starting on Oct. 20th, you need to be
logged into an account assoicated with your Cornell NetID for your Poll Everywhere participation to count. This
Is the only way for us to reliably identify who participated.

e 4% for lab attendance, as recorded by the lab’s instructors.

e 2% for surveys:

o The introduction survey (on Gradescope) in the first week of class.

o The mid-semester feedback survey.

o The semester-end course evaluation.

We know that life happens, so you can miss up to 3 lab sections and 5 lectures without penalty.

Gornell Bowers GIS
Computer Science

CS3410: Computer Systems and Organization
LEC15: Caches (Vol. |)

Professor Giulia Guidi
Monday, October 20, 2025

Credits: Bala, Bracy, Garcia, Guidi, Kao, Sampson, Sirer, Weatherspoon

> ‘@@@@\

Final Exam

The regular final is on Saturday, December 13, 7-9 PM

The early final is on Saturday, December 13, 4:30-6:30 PM

Check conflict early and let us know by December 1 which exam you plan to take—no other make-
up will be scheduled.

Final Exam Schedule #6679

Giulia Guidi starF X * @ 48
7 minutes ago in Genera | UNPIN STAR WATCHING VIEWS

Hi everybody,

There’s no weight transfer for the final or make-up final.

| know we haven't really moved past the prelim yet but | want to put the final schedule on the map early
on.

Plan for Today

 |Introduction to Caches

* Direct-mapped Caches

On to caches (that “something great” mentioned earlier)

Principle of Locality and Memory Hierarchy

\

Danictare
Registers

Nt

speed increases
Size Increases

Review of lecture 10 9 ‘@@@@I

Register versus Memory

Given that:

* Registers: or 128 bytes if RV32
« DRAM (data memory): billions of bytes (2-96 GB on a typical laptop)

Physics dictates that smaller is faster

Registers are 50-500 times faster than DRAM (one access latency, tens of ns)!

Review of lecture 10 [

Register versus Memory

Andromeda 2,000 years

/

Pluto 2 years
New York City 4 hrs
this campus 15 min

/

my head 1 min

The problem is that memory is far from CPU

| — CPU, registers, ALU, etc.

by O AT = U%{;U b%;‘U
Hamn 2 g g A% . G -— «

— "rj

EAARARATS

—

}Tﬂfh'

it rungpie ob

: i e o £ Gopnn LA D 85 DRAM (main data memory)

;

"¢ -t
. J, . . - .
FA' P S0 L -— ,
1 Y RS L8 8 ¢ |t’s far away
. : -Fr'b?a_«;: F i 2 Sy i : se

S E
3 Lty = --
— ¥° . as
- v | 1.-.% m e 2 |~} ~g
-} l N ; . nf' -
(== . ,Ll . - ,
=E£‘ f : : : ' ‘ .-) P ’ S I
= - : _ _
(= L et 2 v | :
) a- 0 1. . 5 '-s‘ R

b
o

i
e [

21 kR N e ‘ * |t's slow

bl
: i ;|
s Y -r_ K"u'". - y
- 't - O AL |
: - i i
L e ?
: ;{ 2 '«—: } - f
Tl ' == i
» B v -
i o - N
) e h ermamig U
b
s —— ——
\"

TCOMD1780015

] Wl ' S iGEAE NN AN

SandyBridge Motherboard, 2011 http://news.softpedia.com 9 ‘@@@@\

The need for speed
F: D: X: M: W:

|

CPU stages of an instruction

10

The need for speed
F: D: X: M: W:

F: Fetch D: Decode X: Execute M: Memory W: Writeback
8
—_—
—— S % ADD ¥
» Read
— —— regist
Read
nnnnnnnnn p——— rogiierd Read !
| — Write | 'BF’—Q
nnnnnnnnnnnnnnnnn e 3
memory e megsters o x| Memory
= —
......

11

The need for speed

F: Fetch D: Decode X: Execute M: Memory W: Writeback
The instruction speeds: ‘
ADD -
[| 4 - ADD {
e add, sub, shift: 1 cycle | .
o [ot g
e mult:3cycles e — T mg Leome b L b
'":‘::1‘::;“ :.::;, Registers . ;". MMMMM v 3
1 nnnnnn [
. , : 100 cycles

To main memory (DRAM) 12

The need for speed

F: D: X: M W:
..
mult —

The instruction speeds: ,_,f
+ add, sub, shift: 1 cycle 4 iy
e mult:3cycles . —: : L | ,. e b1
: | 100 cycles’ = ”

To main memory (DRAM) 13

The need for speed s ment s very

expensive!

F: Fetch D: Decode X: Execute M: Memory W: Writeback

The instruction speeds:

e add, sub, shift: 1 cycle Vo)

M— .
R +
e PC register dote 1 B Ao
" - Read : :
ter 1 Read
' m u C C eS INSLAUCHON Fd mg"’ er d:l’a 2@ . ALU ¢ .
] | ‘r:;: :::: | N w ALU result * Address Readdata™
Instruction) U e M
Writ: sters
mmmmm dote . Memory 3
= 3
-
WWWWWW
° - 100 cvycles?
, u y

To main memory (DRAM) 14

So how can | address this bottleneck?

15

Caches!

|
| 3
LA
‘ 2 > =l
"‘ S
o - - - - s %z
{ Pt = = 3
5 . [— =
¢ E® =0 =
- Her - = =
i ¥ 2 — b U -
"'?-' -
. ; b }f‘ ce— r' ' '!u
» ' i’ x & < - N 'ﬂm’
W‘ o ¥ | o
ﬂ‘,-@ o~ X 'P
2 R (l” 3 ‘ . » "
- a st Ul G -~
— > - RE] T T
: e ¥ =l T
s - - h
: , /
= : |
-4 ' f 3 .‘ - - . 3 -) rags '
- F"' = ' .}\ i 5
- . -1 FIEREF —h I
: ! s o : Ef_; = .
: W 4 » . A'- T ~ .b ——
e : : - n PE e
- .8 : - : ~Rm s i e
s l.’..,} | %3)
i = o7}
- = Aliad-

|
{

ledeteenann
@
- = :: 9
i
033 LWLIC?NS
{

- 33
: '(% - = y
= Rl =l X Je
= ¥ T ‘:g - s = " 4 A
3 T - = A) E.
= = : 21 -
1:"_ - x
0 -
r-c
e A - v
PN <~‘
= \

’ -y - \ § .
g - ’ Y B = ; ! a
4 (s 0 - N - i
7 > ; ;E 1 ey 0 A : i
> ot Y 2
4 - L] ., . . 0
. :”‘- S - ’ ._‘:'_.
» » o s
' =% i X
rYE ot X ':: = 1
a—-—_ s = ¥
— 3 " ' A . = ; f i f !
T $ { d 4
L R v, = -
T G et B
VHERDR " ke, S = W ——
e ¥ ‘,r:r:l . = [

4
Tt - W e -
o - s : o e Ve T
A R | "— 1 - - - \
R)]

Cache is a small and fast memory on chip

Deizs
vaiul
-

T SoRhae (UL - , B i & 1l
157 sram e o g s T i
- "
33132508

s P2 :) S SEIETT T o
T e L _EE RN
TCSMD1780015 9 <o P b S

L RS
o A

SandyBridge Motherboard, 2011 http://news.softpedia.com 16 @@@@

Principle of Locality and Memory Hierarchy

‘5)/5 P~ H ("/g‘_q{l'v’,:"\ _"'.('g}
T\\‘\:\Q ‘ U te) '\B\gy |f fe

speed increases
Size Increases

Review of lecture 10 17

main memory caches
A A

dynamic 5 static

 DRAM versus SRAM

_______ .

random

memory

18

Main Memory is DRAM

Dynamic Random Access Memory:
e Latency to access first word: ~10ns (~30-40 processor cycles), each successive (0.5ns — 1ns)
 Each access brings 64 bits
- $3/GiB

GiB (Gibibyte) = 1,073,741,824 bytes (239); binary, used by operating systems like Windows/Linux
GB (Gigabyte) = 1,000,000,000 bytes (10°); decimal, used by storage manufacturers

19

Main Memory is DRAM

Dynamic Random Access Memory:
e Latency to access first word: ~10ns (~30-40 processor cycles), each successive (0.5ns — 1ns)
 Each access brings 64 bits
- $3/GiB

GiB (Gibibyte) = 1,073,741,824 bytes (239); binary, used by operating systems like Windows/Linux
GB (Gigabyte) = 1,000,000,000 bytes (10°); decimal, used by storage manufacturers

Data is not permanent:
 Each bit of data in DRAM is stored in a capacitor on a transistor
 (Capacitors leak charge over time and the stored bits fade, so the memory must be constantly

refreshed

. @0

Main Memory is DRAM

Dynamic Random Access Memory:
e Latency to access first word: ~10ns (~30-40 processor cycles), each successive (0.5ns — 1ns)
 Each access brings 64 bits
- $3/GiB

GiB (Gibibyte) = 1,073,741,824 bytes (239); binary, used by operating systems like Windows/Linux
GB (Gigabyte) = 1,000,000,000 bytes (10°); decimal, used by storage manufacturers

Data is not permanent:
 Each bit of data in DRAM is stored in a capacitor on a transistor
 (Capacitors leak charge over time and the stored bits fade, so the memory must be constantly
refreshed

* |tis volatile, meaning all data disappears when power is removed

> oS0

Cache is SRAM

Static Random Access Memory:
e |t’s faster (0.5 ns), more expensive, and allow lower density
 Unlike DRAM, it stores each bit using a small latch made of multiple transistors (typically 6),
so it doesn’t need refreshing — That’s why it’s called static

* |tis volatile, meaning all data disappears when power Is removed

22

DRAM versus SRAM

Feature DRAM (Dynamic RAM) SRAM (Static RAM)
""" Datastorage Uses 1 transistor + 1 capacitorper bt~ Uses a latch with 6 transistors per bit
""" Refreshneeded? Yes, mustbe refreshed periodicaly Norefreshrequed
""" speed SlowerthanSRAM Fast
""" Cost ~ Cheaper(fewertransistory ~ Expensive(moretransistors)
""" Density ~ Highdensity (orebitsperchip) Lowdensity iakes morespace)
""" powerusage | Lower idle power, but refresh consumes energy | Higher idle power, but efficient during access
Volatitty Volatile (data lost withoutpower) Volatile (data lost without power)
""" Weicaluse Maimmemory CPUcaches(il2ly
Accesstme ~10-100ns(anoseconds) “1-2ns (nanoseconds)
""" Costperbit Low HWgh

23

Storage / Disk / Secondary Memory

They are attached as a peripheral 1/0 device: non-volatile
e Solid-State Device (SSD)
 Time access: 40-100ps (~100k processor cycles)
- $0.05-0.5/GB
e Usually flash memory
« Hard-Disk Drive (HDD)
 Time access: < 5-10ms (10-20M processor cycles)
« $0.01-0.1/GB

 Usually mechanical

24

Poll

You must be logged in PollEv to get credit
Why does DRAM require refreshes?

PollEv.com /gguidi
Or send gguidi to 22333

25

https://pollev.com/gguidi

Poll

You must be logged in PollEv to get credit
Which memory has higher density (more bits per chip area)?

PollEv.com /gguidi
Or send gguidi to 22333

20

https://pollev.com/gguidi

Locality, Locality, Locality

27

Lccallty LOCaIIty LOCaIity 2 main categories!

If you ask for something, you’'re likely to ask for:

 The same piece of data again soon temporal locality

The same data a is reused (short time apart)

program timeline accessing variables

28

Lccallty LOCaIIty LOCaIIty 2 main categories!

If you ask for something, you’'re likely to ask for:

 Piece of data that’s near the previous piece of data

29

Poll

You must be logged in PollEv to get credit

Choose the variable that has good spatial locality and the one that has good
temporal locality:

total = 0;
for (i = 1; i < n; i++)

n—:;
total += alil:

PollEv.com /gguidi
Or send gguidi to 22333

return total;

30

https://pollev.com/gguidi

Locality (Errata Corrige)

Choose the variable that has good spatial locality and the one that has good
temporal locality:

total = 0;

for (1= 13 i<ns ime) Varigble Temporallocality Spatial locality

{ total 4 High X Low
—: alil Xtow ‘@Hgh
total += alil; T T o
; i @Heh Xiow

return total;

1, n, and total all exhibit temporal locality because they are accessed every iteration of the
loop, while a[1i] instead shows spatial locality as we move sequentially through the array

, @0

Locality

C code:

total = 0;

for (i1 = 13 1 < n; i++)
{

total += alil;

}

return total:

32

Locality
C code:

total = 0;
for (i1 = 13 1 < n; i++)
{

total += alil:

}

return total;
total has good temporal locality because it will be asked for again and again

The accesses to a [1] have good spatial locality because after asking for a [1]
the code soon will ask for the data right after it in memory a[i+1]

33 ‘@@@@\

Locality

C code: Variable Temporal locality

int total = 05 totalH,gh """)(Low ---

et Py R T— R

nt ato00l; e N Forem
R o w0

for (int 1 = 0: 1 < 1000: i++) {
temp = 1 % 3;
total += ali x 10];

return total:

temp has bad temporal locality because it is never reused beyond the loop, and the array has
bad spatial locality because elements are accessed with a large stride instead of sequentially

y @0

Locality

C code: Variable Temporal locality

int total = 05 totalH,gh """)(Low ---

et Py R T— R

nt ato00l; e N Forem
EU aven w0

for (int 1 = 0: 1 < 1000: i++) {
temp = 1 % 3;
total += ali x 10];

return total:

In the loop, temp = 1 *x 3 does have good temporal locality as a variable access but the
value stored in temp has bad temporal locality

s oS0

Locality

Locality is not just about how often a variable appears, but about how the value is reused

over time or space relative to the rest of

25000 1

Temporal Locality

Address
P
o
-

J””‘

the program

Spatial Locality

_ ¢

161000

75000

151000 152000 153000 1549000

https://stackoverflow.com/questions/7638932/what-is-locality-of-reference

155000 156000 157000 158000 159000 160000

Cycle

36

oS0

Your Life is Full of Locality

atl ATET 4G - 2:36 PM

1(949) 837-4500 (- 103 ©
T v @
.mt.a X i,
'Judi*‘l.ellnitz ay ©
'DonT(a:ylor 2 nday €
Pqn Ta;ylor y ©
r1(§73) ?25-6775 y ©

37

Your Life is Full of Locality

1 (949) 837-4500 ()

Tom Vilot
1(949{837-4500__ Please take one minute to think about an example of
locality in everyday life and one minute to discuss that with

your neighbor

Rita
Judi Wellnitz
Don Taylor (©

Don Taylor

O © © © © © © ¢©

1(973) 325-6775

@ ~

)

Recents

38

Back to the memory hierarchy

39

Memory Hierarchy

small / fast REGISTER 1 cycle (128 bytes or 246 bytes)
 SERERER.
L1 CACHE 4 cycles (64 kB)
L2 CACHE 12 cycles (256 kB)
_ MAIN MEMORY 50-70 ns (512 MB — 16 GB)
big / slow | |

DISK (SSD) 20-50 ms (16 GB — 4 TB)

A

Intel Haswell Processor, 2013 40 ‘@@@@'

Memory Hierarchy

Can have L3 cache (12 cycles
and 2-20 MB)

small / fast REGISTER

L1 CACHE

L2 CACHE ycles (256 kB)

MAIN MEMORY 50-70 ns (512 MB — 16 GB)

big / slow

DISK (SSD) 20-50 ms (16 GB — 4 TB)

A

Intel Haswell Processor, 2013 41 ‘@@@@'

Terminology

Cache hit

e Datais in the cache
 thit = time to access data in the cache

 Hit Rate (%) = # cache hits / # cache accesses

Cache miss

e Data is not in the cache
e tmiss = time to access and retrieve data

 Miss Rate (%) = # cache misses / # cache accesses

42

Memory Hierarchy

small / fast REGISTER The average access time tayg:

tavg = thit + Yo miss * tmiss
L1 CACHE

g ey, eSS 0

L2 CACHE tavg = 9 cycles

MAIN MEMORY

DISK (SSD)

A

43

big / slow

Single-Core Memory Hierarchy

small / fast REGISTER

L1 CACHE

Can have L3

L2 CACHE

: MAIN MEMORY
big / slow

DISK (SSD)

A

44

On to cache design—let’s start with direct mapped cache

45

16 Byte Memory

load 1100 — r1l MEMORY
 Byte-addressable memory 1111 P
1110 O
* |n this example, 4-bit address 1101 N
1100 V]
1011 L
1010 K
1001 J
1000 |
0111 H
0110 G
0101 F
0100 E
0011 D
0010 C
0001 B
0000 A

46

4 Bytes, Directed Mapped Cache

CACHE MEMORY

index index | I addr
XXXX 11 D 1111 P
10 C 1110 O
B 11 N
00 A 1100 M
1011 L
1010 K
.] 10 J

Direct mapped:

1000 I
Each memory address has exactly one possible location in the cache 0111 H
where it can go—this makes lookups very fast 0110 G
01 F
_ : _ - . 0100 E
It’s indexed with LSB: = least significant bit 001 5
Good spatial locality 0010 C
00 B
0000 A

47

4-Byte Directed Mapped Cache

CACHE

iIndex
11

10

00

Tag: minimalist label/address

address = tag + 1ndex

1101

tag | index

48

addr
1111

1110
11

1100
1011
1010
10

1000
0111
0110
01

0100
0011
0010
00

0000

MEMORY

> D OU0OmMmmTmMGEOGI —«cXxXxr< Z20m

4-Byte Directed Mapped Cache

CACHE MEMORY
index | [INEIEERERE] tag | index addr

11 1111 P

10 1101 1110 0

11 N

00 1100 M

1011 L

1010 K

. . 1

One last tweak: valid bit oo ;
The valid bit is a single bit in each cache line that indicates whether the data 0111 H
stored in that line is valid or not 0110 G
Valid Bit = 1: The data in the cache line is valid and can be used g:oo E
The data in the cache line is , meaning it doesn’t contain 001+ D

useful information and cannot produce a cache hit 0010 C
00 B

0000 A

49

The access algorithm

CACHE
index tag | Index
11 0 00 D
10, 0 00 G 1101
0 00 B
00 0 00 A

@ Split the address between tag t and index 1

@ Check the entry 1

@ Is it valid? If no, cache miss!

@ If the bit is valid, then is it the tag t? If no, cache miss!

@ Otherwise, cache hit!

50

addr
1111

1110
11

1100
1011
1010
10

1000
0111
0110
01

0100
0011
0010
00

0000

MEMORY

> D OU0OmMmmTmMGEOGI —«cXxXxr< Z20m

The access algorithm

CACHE MEMORY

index | [INEIEERERE] tag | index addr
11 0 00 D 1111 P
10 0 00 C 1101 1110 o
0 00 B 11 N
00 0 00 A 1100 M
1011 L
1010 K
. . 10 J
On cache miss, fill the cache: 1000 I
@ Get data d from the main memory 0111 H
0110 G
@ Is entry valid? If so, evict 01 F
_ 0100 E
@ Then, set valid bit =1, tag = t, data=d in entry 1 0014 D
0010 C
00 B
0000 A

51

