
You must be logged in PollEv to get credit

1

CS3410: Computer Systems and Organization
LEC15: Caches (Vol. I)

Professor Giulia Guidi

Monday, October 20, 2025

2

Credits: Bala, Bracy, Garcia, Guidi, Kao, Sampson, Sirer, Weatherspoon

Final Exam

The regular final is on Saturday, December 13, 7-9 PM

The early final is on Saturday, December 13, 4:30-6:30 PM

The make-up final is on Friday, Decemeber 12, 9-11 AM

Check conflict early and let us know by December 1 which exam you plan to take—no other make-
up will be scheduled.

There’s no weight transfer for the final or make-up final.

3

Plan for Today

• Introduction to Caches

4

• Direct-mapped Caches

On to caches (that “something great” mentioned earlier)

5

Principle of Locality and Memory Hierarchy

6

sp
ee

d
in

cr
ea

se
s

si
ze

 in
cr

ea
se

s

Review of lecture 10

Register versus Memory

7

Given that:

• Registers: 256 bytes is RV64 or 128 bytes if RV32

• DRAM (data memory): billions of bytes (2-96 GB on a typical laptop)

Physics dictates that smaller is faster

Registers are 50-500 times faster than DRAM (one access latency, tens of ns)!

Review of lecture 10

Register versus Memory

8

109 tape/optical robot

106 disk

100 memory

2 “something great coming up”

1 register

[ns]

2 years

4 hrs

15 min

1 min

2,000 years

9SandyBridge Motherboard, 2011 http://news.softpedia.com

DRAM (main data memory)

CPU, registers, ALU, etc.

• It’s far away

• It’s big

• It’s slow

The problem is that memory is far from CPU

The need for speed

10

F: D: X: M: W:

CPU stages of an instruction

The need for speed

11

F: D: X: M: W:

12

F: D: X: M: W:
The need for speed

add
1 1 1 1

1To main memory (DRAM)

The instruction speeds:

• add, sub, shift: 1 cycle

• mult: 3 cycles

• load, store: 100 cycles1

13

F: D: X: M: W:
The need for speed

mult
31 1 1

1To main memory (DRAM)

The instruction speeds:

• add, sub, shift: 1 cycle

• mult: 3 cycles

• load, store: 100 cycles1

14

The instruction speeds:

• add, sub, shift: 1 cycle

• mult: 3 cycles

• load, store: 100 cycles1

F: D: X: M: W:
The need for speed

load
11 1 1

1To main memory (DRAM)

100

data movement is very
expensive!

So how can I address this bottleneck?

15

16SandyBridge Motherboard, 2011 http://news.softpedia.com

Caches!

Cache is a small and fast memory on chip

Principle of Locality and Memory Hierarchy

17

sp
ee

d
in

cr
ea

se
s

si
ze

 in
cr

ea
se

s

Review of lecture 10

Caches

dynamic

18

access

random

memory

static

main memory caches

DRAM versus SRAM

Main Memory is DRAM

19

Dynamic Random Access Memory:

• Latency to access first word: ~10ns (~30-40 processor cycles), each successive (0.5ns – 1ns)

• Each access brings 64 bits

• $3/GiB
GiB (Gibibyte) = 1,073,741,824 bytes (230); binary, used by operating systems like Windows/Linux
GB (Gigabyte) = 1,000,000,000 bytes (10⁹); decimal, used by storage manufacturers

Main Memory is DRAM

20

Dynamic Random Access Memory:

• Latency to access first word: ~10ns (~30-40 processor cycles), each successive (0.5ns – 1ns)

• Each access brings 64 bits

• $3/GiB
GiB (Gibibyte) = 1,073,741,824 bytes (230); binary, used by operating systems like Windows/Linux
GB (Gigabyte) = 1,000,000,000 bytes (10⁹); decimal, used by storage manufacturers

Data is not permanent:

• Each bit of data in DRAM is stored in a capacitor on a transistor

• Capacitors leak charge over time and the stored bits fade, so the memory must be constantly

refreshed → That’s why it’s called dynamic

• It is volatile, meaning all data disappears when power is removed

Main Memory is DRAM

21

Dynamic Random Access Memory:

• Latency to access first word: ~10ns (~30-40 processor cycles), each successive (0.5ns – 1ns)

• Each access brings 64 bits

• $3/GiB
GiB (Gibibyte) = 1,073,741,824 bytes (230); binary, used by operating systems like Windows/Linux
GB (Gigabyte) = 1,000,000,000 bytes (10⁹); decimal, used by storage manufacturers

Data is not permanent:

• Each bit of data in DRAM is stored in a capacitor on a transistor

• Capacitors leak charge over time and the stored bits fade, so the memory must be constantly

refreshed → That’s why it’s called dynamic

• It is volatile, meaning all data disappears when power is removed

Cache is SRAM

22

Static Random Access Memory:

• It’s faster (0.5 ns), more expensive, and allow lower density

• Unlike DRAM, it stores each bit using a small latch made of multiple transistors (typically 6),

so it doesn’t need refreshing → That’s why it’s called static

• It is volatile, meaning all data disappears when power is removed

DRAM versus SRAM

23

Feature DRAM (Dynamic RAM) SRAM (Static RAM)

Data storage Uses 1 transistor + 1 capacitor per bit Uses a latch with 6 transistors per bit

Refresh needed? Yes, must be refreshed periodically No refresh required

Speed Slower than SRAM Fast

Cost Cheaper (fewer transistors) Expensive (more transistors)

Density High density (more bits per chip) Low density (takes more space)

Power usage Lower idle power, but refresh consumes energy Higher idle power, but efficient during access

Volatility Volatile (data lost without power) Volatile (data lost without power)

Typical use Main memory CPU caches (L1/L2/L3)

Access time ~10–100 ns (nanoseconds) ~1–2 ns (nanoseconds)

Cost per bit Low High

Storage / Disk / Secondary Memory

24

They are attached as a peripheral I/O device: non-volatile

• Solid-State Device (SSD)

• Time access: 40-100μs (~100k processor cycles)

• $0.05-0.5/GB

• Usually flash memory

• Hard-Disk Drive (HDD)

• Time access: < 5-10ms (10-20M processor cycles)

• $0.01-0.1/GB

• Usually mechanical

Poll

25

Why does DRAM require refreshes?

PollEv.com /gguidi
Or send gguidi to 22333

You must be logged in PollEv to get credit

https://pollev.com/gguidi

Poll

26

Which memory has higher density (more bits per chip area)?

PollEv.com /gguidi
Or send gguidi to 22333

You must be logged in PollEv to get credit

https://pollev.com/gguidi

Locality, Locality, Locality

27

Locality Locality Locality

28

If you ask for something, you’re likely to ask for:

• The same piece of data again soon

2 main categories!

temporal locality

program timeline accessing variables

a b a a a a c a

The same data a is reused (short time apart)

Locality Locality Locality

29

If you ask for something, you’re likely to ask for:

• Piece of data that’s near the previous piece of data spatial locality

2 main categories!

program timeline accessing variables

A[0] A[1] A[2] A[3] A[4] A[6] c B

The access moves to nearby addresses

Poll

30

1 total = 0;
2 for (i = 1; i < n; i++)
{
3 n-—;
4 total += a[i];
}
5 return total;

PollEv.com /gguidi
Or send gguidi to 22333

Choose the variable that has good spatial locality and the one that has good
temporal locality:

You must be logged in PollEv to get credit

https://pollev.com/gguidi

Locality (Errata Corrige)

31

1 total = 0;
2 for (i = 1; i < n; i++)
{
3 n-—;
4 total += a[i];
}
5 return total;

Variable Temporal locality Spatial locality

total ✅ High ❌ Low

a[i] ❌ Low ✅ High

n ✅ High ❌ Low

i ✅ High ❌ Low

Choose the variable that has good spatial locality and the one that has good
temporal locality:

i, n, and total all exhibit temporal locality because they are accessed every iteration of the
loop, while a[i] instead shows spatial locality as we move sequentially through the array

Locality

32

C code:

total = 0;
for (i = 1; i < n; i++)
{

total += a[i];
}
return total;

Locality

33

C code:

total = 0;
for (i = 1; i < n; i++)
{

total += a[i];
}
return total;

total has good temporal locality because it will be asked for again and again

The accesses to a[i] have good spatial locality because after asking for a[i]
the code soon will ask for the data right after it in memory a[i+1]

Locality

34

C code:
int total = 0;
int temp;
int a[1000];

for (int i = 0; i < 1000; i++) {
 temp = i * 3;
 total += a[i * 10];
}
// 100 lines of code and temp is never used again
return total;

Variable Temporal locality Spatial locality

total ✅ High ❌ Low

a[i * 10] ❌ Low ❌ Low

temp ❌ Low ❌ Low

i ✅ High ❌ Low

temp has bad temporal locality because it is never reused beyond the loop, and the array has
bad spatial locality because elements are accessed with a large stride instead of sequentially

Locality

35

C code:
int total = 0;
int temp;
int a[1000];

for (int i = 0; i < 1000; i++) {
 temp = i * 3;
 total += a[i * 10];
}
// 100 lines of code and temp is never used again
return total;

Variable Temporal locality Spatial locality

total ✅ High ❌ Low

a[i * 10] ❌ Low ❌ Low

temp ❌ Low ❌ Low

i ✅ High ❌ Low

In the loop, temp = i * 3 does have good temporal locality as a variable access but the
value stored in temp has bad temporal locality

Locality

36https://stackoverflow.com/questions/7638932/what-is-locality-of-reference

Locality is not just about how often a variable appears, but about how the value is reused
over time or space relative to the rest of the program

Your Life is Full of Locality

37

Your Life is Full of Locality

38

Please take one minute to think about an example of
locality in everyday life and one minute to discuss that with
your neighbor

Back to the memory hierarchy

39

Memory Hierarchy

40Intel Haswell Processor, 2013

1 cycle (128 bytes or 246 bytes)

4 cycles (64 kB)

12 cycles (256 kB)

small / fast

big / slow
50-70 ns (512 MB — 16 GB)

20-50 ms (16 GB — 4 TB)

Memory Hierarchy

41Intel Haswell Processor, 2013

1 cycle (128 bytes or 246 bytes)

4 cycles (64 kB)

12 cycles (256 kB)

small / fast

big / slow
50-70 ns (512 MB — 16 GB)

20-50 ms (16 GB — 4 TB)

Can have L3 cache (12 cycles
and 2-20 MB)

Terminology

42

Cache hit
• Data is in the cache

• thit = time to access data in the cache

• Hit Rate (%) = # cache hits / # cache accesses

Cache miss
• Data is not in the cache

• tmiss = time to access and retrieve data

• Miss Rate (%) = # cache misses / # cache accesses

Memory Hierarchy

43

The average access time tavg:

tavg = thit + %miss * tmiss

tavg = 4 + 5% * 100
tavg = 9 cycles

small / fast

big / slow

Single-Core Memory Hierarchy

44

small / fast

big / slow

Can have L3

On to cache design—let’s start with direct mapped cache

45

16 Byte Memory

46

load 1100 r1 MEMORY
Data

P
O
N
M
L
K
J
I
H
G
F
E
D
C
B
A

addr
1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

• Byte-addressable memory

• In this example, 4-bit address

4 Bytes, Directed Mapped Cache

47

MEMORY
Data

P
O
N
M
L
K
J
I
H
G
F
E
D
C
B
A

addr
1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

Data
D
C
B
A

CACHE
index
1111
1110
1101
1100

index
XXXX

Direct mapped:

It’s indexed with LSB:

= 1 row
= cache block
= cache line

Each memory address has exactly one possible location in the cache
where it can go—this makes lookups very fast

Good spatial locality

= least significant bit

= 1 byte

= 1 byteData in the cache already

4-Byte Directed Mapped Cache

48

MEMORY
Data

P
O
N
M
L
K
J
I
H
G
F
E
D
C
B
A

addr
1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

CACHE
index
1111
1110
1101
1100

Tag: minimalist label/address

address = tag + index

Tag Data
00 D
00 C
00 B
00 A

tag | index
1101

Data in the cache already

Data you’re trying to load in the register

49

MEMORY
Data

P
O
N
M
L
K
J
I
H
G
F
E
D
C
B
A

addr
1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

CACHE
index
1111
1110
1101
1100

One last tweak: valid bit

V Tag Data
0 00 D
0 00 C
0 00 B
0 00 A

tag | index
1101

The valid bit is a single bit in each cache line that indicates whether the data
stored in that line is valid or not

Valid Bit = 1: The data in the cache line is valid and can be used

Valid Bit = 0: The data in the cache line is invalid, meaning it doesn’t contain
useful information and cannot produce a cache hit

the cache line is essentially considered empty

4-Byte Directed Mapped Cache

50

MEMORY
Data

P
O
N
M
L
K
J
I
H
G
F
E
D
C
B
A

addr
1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

CACHE
index
1111
1110
1101
1100

V Tag Data
0 00 D
0 00 C
0 00 B
0 00 A

tag | index
1101

The access algorithm

Split the address between tag t and index i1

Is it valid? If no, cache miss!3

If the bit is valid, then is it the tag t? If no, cache miss!4

Otherwise, cache hit!5

Check the entry i2

Data in the cache already

Data you’re trying to load in the register

51

MEMORY
Data

P
O
N
M
L
K
J
I
H
G
F
E
D
C
B
A

addr
1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

CACHE
index
1111
1110
1101
1100

V Tag Data
0 00 D
0 00 C
0 00 B
0 00 A

tag | index
1101

The access algorithm

On cache miss, fill the cache:

Then, set valid bit = 1, tag = t, data = d in entry i3

Is entry valid? If so, evict2

Get data d from the main memory1

Data in the cache already

Data you’re trying to load in the register

