ornell Bowers GIS
Computer Science

CS3410: Computer Systems and Organization
LEC14: RISC-V Calling Convention (Vol.

Professor Giulia Guidi
Wednesday, October 15, 2025

Credits: Bala, Bracy, Garcia, Guidi, Kao, Sampson, Sirer, Weatherspoon

1 00

On to a few announcements first

Prelim (Vol. II)

GDB not on the prelim

Our prelim make-up is coming up Thursday, October 16:

 5:30 PM in Gates Hall GO1 (everyone taking the makeup will meet here)

Quick reminders:
 Please use the restroom before the exam
* During testing no devices (phones, calculators, watches, headphones, etc.) are permitted

 Don’t forget to bring your Cornell ID since we’ll use it to check you in and swap for your netlD

; oS0

Prelim (Vol. II)

If you have taken the regular prelim, please see the option to transfer 50% of prelim weight to final
on EdDiscussion:

* Regrade requests will be handled in bulk on Friday
* The weight transfer offer is optional
* |f you decided to take the weight transfer offer, you must let us know by October 22

* |f you decided to take the weight transfer offer, the transfer is final and cannot be renegotiated

Option to transfer 50% of prelim weight to final — Response
due Wednesday, October 22 #653

Giulia Guidi sTaFF) § * © 484
2 days ago in Genera UNPIN STAR WATCHING VIEWS

Hi everyone,

3 We know that exams can be stressful, and sometimes you may feel that your prelim performance doesn'’t
fully reflect your understanding of the material. To help with this, we introduced an option to adjust the
weighting of your prelim and final.

Prelim (Vol. II)

If you have taken the regular prelim, please see the option to transfer 50% of prelim weight to final
on EdDiscussion:

* Regrade requests will be handled in bulk on Friday
* The weight transfer offer is optional
* |f you decided to take the weight transfer offer, you must let us know by October 22

* |f you decided to take the weight transfer offer, the transfer is final and cannot be renegotiated

PS: | have a water bottle and a pair of AirPod still in my office. I’ve found them after the regular prelim
in KND 116. If you think either of them is yours, please email me describing the object (e.g., color,
case, etc.). I'll bring them to Gates Lost & Found on Monday.

: @0

Final Exam

The regular final is on Saturday, December 13, 7-9 PM

The early final is on Saturday, December 13, 4:30-6:30 PM

Check conflict early and let us know by December 1 which exam you plan to take—no other make-
up will be scheduled.

Final Exam Schedule #6679

Giulia Guidi starF I * @ 48
7 minutes ago in Genera | UNPIN STAR WATCHING VIEWS

Hi everybody,

There’s no weight transfer for the final or make-up final.

| know we haven't really moved past the prelim yet but | want to put the final schedule on the map early
on.

Course eval mid-semester survey due 10/17

Course eval mid-semester survey due October 17 #655

"

Giulia Guidi STAFF X * @ 233
2 days ago in General UNPIN STAR WATCHING VIEWS

Hi (again) everybody,

The mid-semester course evaluation survey is running from October 8 to October 17. You should have
received the survey link by email. Per syllabus, you can receive credit for completing it.

It is common that most feedback can only be implemented between semesters, but we always look
forward to reading your comments and seeing what we can improve for you as the semester progresses.

Your feedback helps us make CS 3410 better, not just for future students, but also for your own learning
experience right now.

Participation
Thank you for sharing your thoughts. We look forward to reading them!

The “participation” segment of your grade has three main components:
Best,

Prof. Guidi

e 4% for Lecture attendance, as measured by occasional Poll Everywhere polls.
e 4% for lab attendance, as recorded by the lab’s instructors.
o 2% for surveys:

o The introduction survey (on Gradescope) in the first week of class.

o The mid-semester feedback survey.

o The semester-end course evaluation.

We know that life happens, so you can miss up to 3 lab sections and 5 lectures without penalty.

: oS0

Plan for Today

* Review of RISC-V Calling Convention and Stack

* |ntroduction to Cache, maybe?

Review of stack

Stack

A stack is like a vertical stack of boxes: You add (push) boxes on top and take (pop)
boxes from the top

Every time a function is called, a new IS allocated on the stack

STACK

fooB() { fooC(); }
fooC() { .. }

Each stack frame includes:

ol e - Return “instruction” address

- Parameters (arguments)

f0oC () frame - Space for other local variables

10

Stack

A stack frame constitutes a contiguous block of memory

The stack pointer sp tells us the “top of the stack,” i.e., the start of the current stack
frame

STACK

fooB() { fooC(); }
fooC() { .. }

Each stack frame includes:

ol e - Return “instruction” address

If fooC () terminates: - Parameters (arguments)
fooC() frame - Space for other local variables

Sp —»

11

Stack

So when the function ends, the stack frame is “tossed off the stack”

The stack pointer sp tells us the “top of the stack,” i.e., the start of the current stack
frame

STACK

fooB() { fooC(); }
fooC() { .. }

Each stack frame includes:

ol e - Return “instruction” address

If fooC() terminates: sp —> - Parameters (arguments)
- Space for other local variables

12

Stack

Declared arrays are only allocated while the scope is valid

// incorrect =—————> Dbecause of how the stack operates!

char xfoo() A
char string[32]; ...;

return string;

13

Stack

Declared arrays are only allocated while the scope is valid

void load buf(char xptr,

w) 1 STACK
Sp —» OXFFFF FFFF

int () {

char bufl[...];

load buf(buf, BUFLEN);

14

Stack

Declared arrays are only allocated while the scope is valid

void load buf(char xptr,

w) 1 STACK
OXFFFF FFFF

buf
sp —»

int () {

char bufl[...];

load buf(buf, BUFLEN);

15

Stack

Declared arrays are only allocated while the scope is valid

void load buf(char xptr,

w) 1 STACK

OxFFFF FFFF
buf

¥ >
load buf frame

int () { sp —»

buf persists through Load buf’s execution

char bufl[...];

Lload buf(buf, BUFLEN);

16

Stack

Declared arrays are only allocated while the scope is valid

char xmake buf() {

STACK
sp —» OXFFFF FFFF

char [50] ;
return .

}
void foo(..) {..}
int ()4
char * = make buf();

foo ();

17

Stack

Declared arrays are only allocated while the scope is valid

char xmake buf() {

STACK

char [50];
OxXFFFF FFFF

return .

} >p—>

void foo(..) {..}
int ()4
char * = make buf();

foo ();

18

Stack

Declared arrays are only allocated while the scope is valid

char xmake buf() {

STACK

char [50];
OxXFFFF FFFF

return ;
I3
make_buf frame:

void foo(..) {..} Sp —>»
int ()1

char x = make buf();

foo(ptr);
I3

19

Stack

Declared arrays are only allocated while the scope is valid

char xmake buf() {

STACK

char [50];
OxXFFFF FFFF

return .

} >p—>

void foo(..) {..}
int ()4
char * = make buf();

foo ();

20

Stack

Declared arrays are only allocated while the scope is valid

char xmake buf() {

char bu7[50]; SIACK
OxFFFF FFFF
return ;
I3
. foo frame
void foo(..) {..} sp I
int ()4 points to overwritten memory
char * = make buf();
foo(ptr);

21

Poll: The Stack Café

Given the C code below, if makeCoffee(3) is called, what happens on the stack?

void makeCoffee(int scoops) {
int waterMl = scoops x 100;
int brewTime = waterMl / 50;

pourCoffee(brewTime);

PollEv.com /gguidi
Or send gguidi to 22333

https://pollev.com/gguidi

Poll: The Stack Café

Given the C code below, if makeCoffee(3) is called, what happens on the stack?

void makeCoffee(int scoops) {
int waterMl = scoops x 100;
int brewTime = waterMl / 50;

pourCoffee(brewTime);

¥

— scoops, waterMl, and brewT 1ime have space reserved on the stack

* |[n C, space is allocated on the stack for every local variable, even if the compiler later might
keep It In a register

* In hand-written assembly, you allocate stack space only when needed, such as saving the

return address In a non-leaf function
03 ‘@@@@\

Poll: The Stack C

Given the C code below, if mnakeCoffee(3) is called,

void makeCoffee(int scoops) {

int waterMl = scoops * 100; // 100 mL of water p
int brewTime = waterMl / 50; // 1 second per 50 m
pourCoffee(brewTime) ; // call another func

¥

— scoops, waterMl, and brewT1ime have space reserved on tr

24

Review of calling convention

25

RISC-V Calling Convention

A calling convention is a set of rules that defines how functions communicate:

Register Use
x1-ra The return address
X2 The stack pointer
X5—x7 - tet2 The temporary registers (caller-saved)
X10-x17 - a0-a7 The function arguments and return values (@@-alonly)
X8-x9 - s0-s1 Thesavedregisters (callee-saved)

Caller-saved: Caller must save if it wants the value after the call
Callee-saved: Callee must preserve them across the call

20

RISC-V Calling Convention

A calling convention is a set of rules that defines how functions communicate:

Register Use
x1-ra The return AGGess. 1 1o ceis urion i, rasres e arss o sction o
x2 - The stack pointer s»sioes b adtessn momoro o portwsack
X5x7 - t0-t2 The temporary registers (caller-saved) T subouirscan modtynse e
X10-x17 - a0-a7 The function arguments and return values (@@-alonly)
X8-x9 - s0-s1 Thesavedregisters (callee-saved)

Caller-saved: Caller must save if it wants the value after the call
Callee-saved: Callee must preserve them across the call

27

RISC-V Calling Convention

Register Use
x1-ra The return address
X2 The stack pointer
X5—x7 - tet2 The temporary registers (caller-saved)
X10-x17 - a0-a7 The function arguments and return values (@@-alonly)
X8-x9 - s0-s1 Thesavedregisters (callee-saved)

28

RISC-V Calling Convention

Register Use
x1-ra The return address
X2 The stack pointer
X5—x7 - tet2 The temporary registers (caller-saved)
X10-x17 - a0-a7 The function arguments and return values (@@-alonly)
X8-x9 - s0-s1 Thesavedregisters (callee-saved)

29

RISC-V Calling Convention

A calling convention is a set of rules that defines how functions communicate:

Register Use
X1l - ra The return address
X2 - Sp The stack pointer
X5—x7 - t0—-1t2 The temporary registers (caller-saved) The subroutine can modify these values
Xx10—x17 - a0@—a/ The function arguments and
X8X9 - s8-s1 The saved registers (callee-saved) e simoiineo. addcan fouen e vaes, it must s

Caller-saved: Caller must save if it wants the value after the call
Callee-saved: Callee must preserve them across the call

30

Function Call

Let’s go through the addOne function execution:

int addOne(int 1) {

return 1 + 1;

! I’m not enforcing the 16-byte alignment

prologue
addi sp, sp, -8 # push the stack frame aka allocate space on the stack to store 8 bytes

sd , @(sp) # save the caller onto the stack

body

addi a0, a0, 1 # i + 1 (i passed to addOne in a@) and place return value in a@

Can find this example in Lab 7 31 ‘@@@@\

Function Call

Let’s go through the addOne function execution:

int addOne(int 1) {

return 1 + 1;

! I’m not enforcing the 16-byte alignment

prologue
addi sp, sp, -8 # push the stack frame aka allocate space on the stack to store 8 bytes

sd ra, 0(sp) # save the caller return address onto the stack

If we assumer 64-bit architecture, then ra takes 8 bytes
epilogue
ld ra, @(sp) # restore the return address aka load the value from memory (stack) into ra
addl sp, sp, 8 # pop the stack frame aka deallocate space on the stack

ret # return to caller, remember "ret = jr ra = jalr x0, 0(ra)"

Can find this example in Lab 7 (assuming 64-bit architecture) 32 ‘@@@@\

Do | really need to store ra on the stack in addOne?

33

Function Call

Let’s go through the addOne function execution:

int addOne(int i) {

return 1 + 1;

}

addOne is a leaf function, meaning it does not call another fuction, so we do not actually
need to store ra on the stack

The assembly can be just:

addi a0, a0, 1 1 1 passed to addOne a0 ao

ret

34

Function Call

Let’s go through the add Two function execution:

int addTwo(int 1) < int incrementOne(int x) A # incrementOne body (leaf) (::)
i = incrementOne(i) X =x + 1; addi a0, a0, 1 # x = x + 1
return 1 + 1; return Xx; ret # leaf, untouched
I3 } # remember "ret = jr ra = jalr x0, 0(ra)”

(::>-# addTwo prologue

addi sp, sp, -8 # make stack space

sd , @(sp) # save the caller onto the stack

(::) # addTwo body (non-leaf) (::>-# addTwo epilogue
call incrementOne # overwrites 1d , O(sp) # non-leaf, restored
addi a0, a0, 1 # place return value 1n a0 addi sp, sp, 8

ret
| assumed 64-bit architecture and | did not enforce 16-byte alignment 35 ‘@@@@\

Stack

int (int x) {
_ 1 STACK
X=X 4 sp —> OXFFFF FFFF
return x;
’ The stack pointer sp is what determines “allocating”
} and “deallocating/freeing” stack frames!

int addTwo(int i) {
i = (1)
return 1 + 1;
}
int main() {
int z = 5;
int v = addTwo(z);
printf("%sd\n", v);

return 0;

36

Stack

int (int x) {
_ 1 STACK
X=X+ L OXFFFF FFFF
return x;
’ Sp The stack pointer sp is what determines “allocating”
} and “deallocating/freeing” stack frames!

int addTwo(int i) {
i = (1)
return 1 + 1;
}
int main() {
int z = 5;
int v = addTwo(z);
printf("%sd\n", v);

return 0;

37

Stack

int (int x) {
— . STACK
X =X+ 1 @xFFFF FFFF
return x;

The stack pointer sp is what determines “allocating”

} and “deallocating/freeing” stack frames!
addTwo frame

int addTwo(int 1) { sp —>
i= (1)
return 1 + 1;
}
int main() A
int z = 5;
int v = addTwo(z);
printf("%sd\n", v);

return 0;

38

Stack

— . STACK
X =X+ 1 @xFFFF FFFF

return x;

int incrementOne(int x) { <«— PC

The stack pointer sp is what determines “allocating”

} and “deallocating/freeing” stack frames!
addTwo frame

int addTwo(int 1) {

i = incrementOne(i) incrementOne frame
Sp —>
return 1 + 1;

}

int main() A
int z = 5;
int v = addTwo(z);
printf("%sd\n", v);

return 0;

39

Function Call Example
al az a3

, h, 1,and] are arg%ments SO t%ey are stor%d in af@—a/ (af@—-a3, in this case)

int Leaf (int ¢, int h, int i, int j)
{
int f; — s0
f=(g+h)—(1+3);
return f;

h

callee-saved

In this example, I’'m using s® as a temporary register to store the result of the computation

40

RISC-V Code for Leaf ()

int Leaf(int g, int h, int i, int j)
a0 = g, al = h, a2 =1, a3 = j
return 1n a0

I’m enforcing the 16-byte alignment

Leaft:
addi sp, sp, -16 # stack allocates 16 bytes (for s@ and s1)
sw sl1, 12(sp) # save sl for use afterward callee-saved
sw s@, 8(sp) # save sO@ for use afterward callee-saved
add s0, a0, al, # f =g + h
add s1, a2, a3, # sl = 1 + 7
sub a0, s@, sl1, # return value (g + h) — (i + j)

lw s@, 8(sp) # restore register s@ for caller
lw sl1, 12(sp) # restore register s1 for caller
addi sp, sp 16 # stack deallocates 16 bytes

]r # jump back to calling routine

Can find this in lecture 13 (assuming 32-bit architecture) 41 }@@@@\

RISC-V Code

OXFFFF FFFF

Sp —»

Before the call to Leaf ()

Can find this in lecture 13 (assuming 32-bit architecture)

sp + 12

sp + 8

sp + 4

sp —»

addi sp, sp, -16

Sw
Sw

s1, 12(sp)
s, 8(sp)

sl

s@

During the call to Leaf ()

42

Sp —»

lw s0, 8(sp)
w s1, 12(sp)
addi sp, sp 16

After the call to Leaf ()

oS0

RISC-V Code for Leaf ()

int Leaf(int g, int h, int i, int j)
, al = h, a2 = i, a3 = j
return 1n

Do not need to store the current value of t@ and t1 on the stack—the
caller was responsible for saving the content, if needed

Leaf:
add t0, , al
add tl, a2, a3
sub , 1o, tl

1r

43

Poll

Given the C code below, how many return addresses a exist during execution?

int foo() {
return 1;
}
int bar() {
foo(); PollEv.com /gguidi
return 2;: Or send gguidi to 22333
}

int main() {

bar();

return 0;

44

https://pollev.com/gguidi

Return Address

Given the C code below, fill in the table below:

int foo() {

return 1,; ; ;
} ¥ Programexecuflon o TAROIS O e
int bar() { v minUecalsbarty .

f00(): 2 bar() calls foo()

eturn 22 3 fool)retums
Yy 4 barOreturns
int main() £ 5 mainOretums

bar(); l

return 0;

45

Return Address

Given the C code below, fill in the table below:

int foo() {

return 1;

\ # Program execution points?_t_c_)i ___
int bar() { o rein() calsbar() The address after call bar (etumtorain)
f00() : 2 bar() calls foo()
eturn 22 3 fool)retums
Yy 4 barOreturns
int main() £ 5 mainOretums
bar(); l
return 0;

46

Return Address

Given the C code below, fill in the table below:

int foo() {

return 1; ; ;
F ¥ | ProgramexecUtion A POMS O
int bar() { L main{} callsbarl) | The address after call bar fetuntomain)

£00(): 2 bar() calls foo() The address after call foo (return to bar)

eturn 2 3 foolretums
y 4 barOretums
int nain() £ 5 mainOretums

bar(); l

return 9;

47

Return Address

Given the C code below, fill in the table below:

int foo() {

return 1; ; ;
F ¥ | ProgramexecUtion A POMS O
int bar() { L main{} callsbarl) | The address after call bar fetuntomain)

£00(): 2 bar() calls foo() The address after call foo (return to bar)

eturn 2 3 foo()retums Backtobar
y 4 barOretums
int nain() £ 5 mainOretums

bar(); l

return 9;

48

Return Address

Given the C code below, fill in the table below:

int foo() {

return 1; ; ;
F ¥ | ProgramexecUtion A POMS O
int bar() { L main{} callsbarl) | The address after call bar fetuntomain)

£00(): 2 bar() calls foo() The address after call foo (return to bar)

eturn 2 3 foo()retums Backtobar
y 4 barOretums Backtomain
int nain() £ 5 mainOretums

bar(); l

return 9;

49

Return Address

Given the C code below, fill in the table below:

int foo() {

return 1; ; ;
F ¥ | ProgramexecUtion A POMS O
int bar() { L main{} callsbarl) | The address after call bar fetuntomain)

£00(): 2 bar() calls foo() The address after call foo (return to bar)

eturn 2 3 foo()retums Backtobar
y 4 barOretums Backtomain
int nain() £ 5 main()retums Programends

bar(); l l

return 9;

50

Return Address

Given the C code and assembly below, what if we comment out lines 1-2 and 4-57

int foo() { bar:

return 1, 1 addi sp, sp, -8
I3 2 sd ra, 0(sp)
int bar() { 3 call foo

foo(): 4 ld ra, 0(sp)

return 2: 5 addi sp, sp, 8
} 0 ret

int main() {
bar();

return 0;

In this slide, we assume we are working on a 64-bit architecture o1

Return Address

Given the C code and assembly below, what if we comment out lines 1-2 and 4-57

int foo() { bar:

return 1, 1 addi sp, sp, -8
I3 2 sd ra, 0(sp)
int bar() { 3 call foo

foo(): 4 ld ra, 0(sp)

return 2: 5 addi sp, sp, 8
} 0 ret

int main() {

bar(); The call to foo () overwrite ra (which was holding the return address for main)

return 0; Thus, when bar () executes ret, it jumps to the wrong place. Can crash or runs garbage

In this slide, we assume we are working on a 64-bit architecture 52

Return Address

Given the C code and assembly below, what if we comment out lines 1-2 and 4-57

int foo() { bar:
return 1, 1 addi sp, sp, -8
I3 2 sd ra, 0(sp)
int bar() { 3 call foo
foo(); 4 ld ra, 0(sp)
return 2: 5 addi sp, sp, 8
} 0 ret
int main() { Key Takeaway:
bar(); Every time you call a function (correctly), changes — unless it’s a leaf fuction
return 0; If your function calls another, you must save a or you’ll lose your way back
}

In this slide, we assume we are working on a 64-bit architecture 53

Nested Procedures

int { calls sumSquare () and write the return address to

int result = sumSquare(3, 4); o ra

return 0;

}

int sumSquare(int x, int y) {
return mult(x, x) + y;

}

11 ad, 3
l1 al, 4
jal ra, sumSquare

ret

54

Nested Procedures

int { calls sumSquare () and write the return address to
int result = sumSquare(3, 4); tora
return 0: but then mult() is called in sumSquare() and ra is
! ' overwritten
int sumSquare(int x, int y) {
return mult(x, X) + y;
}
sumSquare:
11 ad, 3 # X = 3 e
i al, 4 #ty =4 jal ra, mult # jump to mult(x, x)
jal ra, sumSquare # a0 contains "
result (3x3 + 4%4 = 25) jr ra # return to main

ret
mult:
mult function defined elsewhere

- OE0)

Nested Procedures

| need to save sumSquare return address on the stack before call to mult

sumSquare:
addi sp, sp, —-16 # Get some space on the stack
sw ra, 12(sp) # Can store ra (poiting to) on the stack
jal ra, mult # Call mult(x, x), ra overwritten
lw ra, 12(sp) # Restore ra from the stack
jr ra # Return
mult:

mult function defined elsewhere

In this slide, we assume a 32-bit architecture and we’re enforcing 16-byte alignment 56 ‘@@@@\

Nested Procedures

| need to save sumSquare return address on the stack before call to mult

sumSquare:
addi sp, sp, -16 # Get some space on the stack
sw ra, 12(sp) # Can store ra on the stack
sw al, 8(sp) # Can store y on the stack (I could have copied it into t0@ directly)
mv , # Set al = a@ so mult(x, x) gets correct second argument
jal ra, mult # Call mult(x, x) takes al and a@ as input

now a@® contains (x *x Xx)

lw t0, 8(sp) # Pop y from the stack into temporary reg t0

add a0, , 10 # a0 = (x % x) +y; (x % x) 1s already stored in a@
lw ra, 12(sp) # Restore ra from the stack

addi sp, sp, 16 # Deallocate stack space

jr ra # Return

mult:
mult function defined elsewhere

In this slide, we assume a 32-bit architecture and we’re enforcing 16-byte alignment 57 ‘@@@@\

RISC-V Symbolic Register

Register ABI Name éDescription éSaver

x6 zero Hard-wired zero -
x1 ra Return address ~ caller
x2 sp Stack pointer callee
x3 o Global pointer -
x4 tp Thread pointer -
x5 0o Temporary/Alternate link register ~ Caller
x6-7 t1-2 Temporaries ~ caller
x8 se/fp Saved register/Frame pointer ~ Callee
x9 sl Saved register Ccallee
x10-11 a@-1 Function arguments/Return values ~ Caller
x12-17 a2-7 Function arguments ~ Caller
x18-27 s2-11 Saved registers ~ cCallee
x28-31 t3-6 Temporaries caller

58

